
math.stackexchange.com/questions/29128/why-determinant-of-a-2-by-2-matrix-is-the-area-of-a-parallelogram
Preview meta tags from the math.stackexchange.com website.
Linked Hostnames
43- 116 links tomath.stackexchange.com
- 9 links tostackexchange.com
- 8 links toi.sstatic.net
- 7 links tostackoverflow.co
- 5 links tostackoverflow.com
- 3 links tometa.stackexchange.com
- 3 links toscifi.stackexchange.com
- 2 links toacademia.stackexchange.com
Thumbnail

Search Engine Appearance
https://math.stackexchange.com/questions/29128/why-determinant-of-a-2-by-2-matrix-is-the-area-of-a-parallelogram
Why determinant of a 2 by 2 matrix is the area of a parallelogram?
Let $A=\begin{bmatrix}a & b\\ c & d\end{bmatrix}$. How could we show that $ad-bc$ is the area of a parallelogram with vertices $(0, 0),\ (a, b),\ (c, d),\ (a+b, c+d)$? Are the areas of the
Bing
Why determinant of a 2 by 2 matrix is the area of a parallelogram?
https://math.stackexchange.com/questions/29128/why-determinant-of-a-2-by-2-matrix-is-the-area-of-a-parallelogram
Let $A=\begin{bmatrix}a & b\\ c & d\end{bmatrix}$. How could we show that $ad-bc$ is the area of a parallelogram with vertices $(0, 0),\ (a, b),\ (c, d),\ (a+b, c+d)$? Are the areas of the
DuckDuckGo

Why determinant of a 2 by 2 matrix is the area of a parallelogram?
Let $A=\begin{bmatrix}a & b\\ c & d\end{bmatrix}$. How could we show that $ad-bc$ is the area of a parallelogram with vertices $(0, 0),\ (a, b),\ (c, d),\ (a+b, c+d)$? Are the areas of the
General Meta Tags
2- titlelinear algebra - Why determinant of a 2 by 2 matrix is the area of a parallelogram? - Mathematics Stack Exchange
- viewportwidth=device-width, height=device-height, initial-scale=1.0, minimum-scale=1.0
Open Graph Meta Tags
6- og:typewebsite
- og:urlhttps://math.stackexchange.com/questions/29128/why-determinant-of-a-2-by-2-matrix-is-the-area-of-a-parallelogram
- og:site_nameMathematics Stack Exchange
- og:imagehttps://cdn.sstatic.net/Sites/math/Img/[email protected]?v=4ec1df2e49b1
- twitter:titleWhy determinant of a 2 by 2 matrix is the area of a parallelogram?
Twitter Meta Tags
2- twitter:cardsummary
- twitter:domainmath.stackexchange.com
Link Tags
10- alternate/feeds/question/29128
- apple-touch-iconhttps://cdn.sstatic.net/Sites/math/Img/apple-touch-icon.png?v=0ae50baa40ed
- canonicalhttps://math.stackexchange.com/questions/29128/why-determinant-of-a-2-by-2-matrix-is-the-area-of-a-parallelogram
- image_srchttps://cdn.sstatic.net/Sites/math/Img/apple-touch-icon.png?v=0ae50baa40ed
- search/opensearch.xml
Links
191- http://en.wikipedia.org/wiki/Pick%27s_theorem
- http://en.wikipedia.org/wiki/Solomon_W._Golomb
- http://math.stackexchange.com/questions/27621/basis-for-mathbbz2/27637#27637
- http://math.stackexchange.com/questions/668/whats-an-intuitive-way-to-think-about-the-determinant
- http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBcQFjAA&url=http%3A%2F%2Fwww.owlnet.rice.edu%2F~fjones%2Fchap8.pdf&rct=j&q=chapter%208%20volumes%20of%20parallelograms&ei=RhOOTajvMYvwsgb46rWSCg&usg=AFQjCNGbCPKI_I9zJRJHumW3nuoNWq1rtw&sig2=f5hiYEvJMnoQGdE0AxSJjw&cad=rja