mathoverflow.net/q/263370/440

Preview meta tags from the mathoverflow.net website.

Linked Hostnames

19

Thumbnail

Search Engine Appearance

Google

https://mathoverflow.net/q/263370/440

Are all Dehn invariants achievable?

The Dehn invariant of a polyhedron is a vector in $\mathbb{R}\otimes_{\mathbb{Z}}\mathbb{R}/2\pi\mathbb{Z}$ defined as the sum over the edges of the polyhedron of the terms $\sum\ell_i\otimes\theta...



Bing

Are all Dehn invariants achievable?

https://mathoverflow.net/q/263370/440

The Dehn invariant of a polyhedron is a vector in $\mathbb{R}\otimes_{\mathbb{Z}}\mathbb{R}/2\pi\mathbb{Z}$ defined as the sum over the edges of the polyhedron of the terms $\sum\ell_i\otimes\theta...



DuckDuckGo

https://mathoverflow.net/q/263370/440

Are all Dehn invariants achievable?

The Dehn invariant of a polyhedron is a vector in $\mathbb{R}\otimes_{\mathbb{Z}}\mathbb{R}/2\pi\mathbb{Z}$ defined as the sum over the edges of the polyhedron of the terms $\sum\ell_i\otimes\theta...

  • General Meta Tags

    2
    • title
      mg.metric geometry - Are all Dehn invariants achievable? - MathOverflow
    • viewport
      width=device-width, height=device-height, initial-scale=1.0, minimum-scale=1.0
  • Open Graph Meta Tags

    6
    • og:type
      website
    • og:url
      https://mathoverflow.net/questions/263370/are-all-dehn-invariants-achievable
    • og:site_name
      MathOverflow
    • og:image
      https://cdn.sstatic.net/Sites/mathoverflow/Img/[email protected]?v=f1c9606b77ff
    • twitter:title
      Are all Dehn invariants achievable?
  • Twitter Meta Tags

    2
    • twitter:card
      summary
    • twitter:domain
      mathoverflow.net
  • Link Tags

    10
    • alternate
      /feeds/question/263370
    • apple-touch-icon
      https://cdn.sstatic.net/Sites/mathoverflow/Img/apple-touch-icon.png?v=8c5ff8612fb4
    • canonical
      https://mathoverflow.net/questions/263370/are-all-dehn-invariants-achievable
    • image_src
      https://cdn.sstatic.net/Sites/mathoverflow/Img/apple-touch-icon.png?v=8c5ff8612fb4
    • search
      /opensearch.xml

Links

74