mathsci.kaist.ac.kr/pow/2025-11-maxima-of-standard-gaussian

Preview meta tags from the mathsci.kaist.ac.kr website.

Linked Hostnames

6

Search Engine Appearance

Google

https://mathsci.kaist.ac.kr/pow/2025-11-maxima-of-standard-gaussian

2025-11 Maxima of standard Gaussian - KAIST Math Problem of the Week

Let ( X_1, X_2, ldots ) be an infinite sequence of standard normal random variables which are not necessarily independent. Show that there exists a universal constant ( C ) such that (mathbb{E} left[ max_i frac{|X_i|}{sqrt{1 + log i}} right] leq C).



Bing

2025-11 Maxima of standard Gaussian - KAIST Math Problem of the Week

https://mathsci.kaist.ac.kr/pow/2025-11-maxima-of-standard-gaussian

Let ( X_1, X_2, ldots ) be an infinite sequence of standard normal random variables which are not necessarily independent. Show that there exists a universal constant ( C ) such that (mathbb{E} left[ max_i frac{|X_i|}{sqrt{1 + log i}} right] leq C).



DuckDuckGo

https://mathsci.kaist.ac.kr/pow/2025-11-maxima-of-standard-gaussian

2025-11 Maxima of standard Gaussian - KAIST Math Problem of the Week

Let ( X_1, X_2, ldots ) be an infinite sequence of standard normal random variables which are not necessarily independent. Show that there exists a universal constant ( C ) such that (mathbb{E} left[ max_i frac{|X_i|}{sqrt{1 + log i}} right] leq C).

  • General Meta Tags

    8
    • title
      2025-11 Maxima of standard Gaussian - KAIST Math Problem of the Week
    • charset
      UTF-8
    • viewport
      width=device-width
    • robots
      index, follow, max-video-preview:-1, max-snippet:-1, max-image-preview:large
    • article:published_time
      2025-05-30T06:00:00+00:00
  • Open Graph Meta Tags

    6
    • US country flagog:locale
      en_US
    • og:type
      article
    • og:title
      2025-11 Maxima of standard Gaussian - KAIST Math Problem of the Week
    • og:description
      Let ( X_1, X_2, ldots ) be an infinite sequence of standard normal random variables which are not necessarily independent. Show that there exists a universal constant ( C ) such that (mathbb{E} left[ max_i frac{|X_i|}{sqrt{1 + log i}} right] leq C).
    • og:url
      https://mathsci.kaist.ac.kr/pow/2025/2025-11-maxima-of-standard-gaussian/
  • Twitter Meta Tags

    4
    • twitter:label1
      Written by
    • twitter:data1
      haywse
    • twitter:label2
      Est. reading time
    • twitter:data2
      1 minute
  • Link Tags

    25
    • EditURI
      https://mathsci.kaist.ac.kr/pow/xmlrpc.php?rsd
    • alternate
      https://mathsci.kaist.ac.kr/pow/feed/
    • alternate
      https://mathsci.kaist.ac.kr/pow/comments/feed/
    • alternate
      https://mathsci.kaist.ac.kr/pow/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fmathsci.kaist.ac.kr%2Fpow%2F2025%2F2025-11-maxima-of-standard-gaussian%2F
    • alternate
      https://mathsci.kaist.ac.kr/pow/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fmathsci.kaist.ac.kr%2Fpow%2F2025%2F2025-11-maxima-of-standard-gaussian%2F&format=xml

Links

210