mathworld.wolfram.com/AckermannNumber.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/AckermannNumber.html

Ackermann Number -- from Wolfram MathWorld

A number of the form n^...^_()_(n)n, where Knuth up-arrow notation has been used. The first few Ackermann numbers are 1^1=1, 2^^2=4, and 3^^^3=3^(3^(·^(·^(·^3))))_()_(7625597484987).



Bing

Ackermann Number -- from Wolfram MathWorld

https://mathworld.wolfram.com/AckermannNumber.html

A number of the form n^...^_()_(n)n, where Knuth up-arrow notation has been used. The first few Ackermann numbers are 1^1=1, 2^^2=4, and 3^^^3=3^(3^(·^(·^(·^3))))_()_(7625597484987).



DuckDuckGo

https://mathworld.wolfram.com/AckermannNumber.html

Ackermann Number -- from Wolfram MathWorld

A number of the form n^...^_()_(n)n, where Knuth up-arrow notation has been used. The first few Ackermann numbers are 1^1=1, 2^^2=4, and 3^^^3=3^(3^(·^(·^(·^3))))_()_(7625597484987).

  • General Meta Tags

    18
    • title
      Ackermann Number -- from Wolfram MathWorld
    • DC.Title
      Ackermann Number
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      A number of the form n^...^_()_(n)n, where Knuth up-arrow notation has been used. The first few Ackermann numbers are 1^1=1, 2^^2=4, and 3^^^3=3^(3^(·^(·^(·^3))))_()_(7625597484987).
    • description
      A number of the form n^...^_()_(n)n, where Knuth up-arrow notation has been used. The first few Ackermann numbers are 1^1=1, 2^^2=4, and 3^^^3=3^(3^(·^(·^(·^3))))_()_(7625597484987).
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share.png
    • og:url
      https://mathworld.wolfram.com/AckermannNumber.html
    • og:type
      website
    • og:title
      Ackermann Number -- from Wolfram MathWorld
    • og:description
      A number of the form n^...^_()_(n)n, where Knuth up-arrow notation has been used. The first few Ackermann numbers are 1^1=1, 2^^2=4, and 3^^^3=3^(3^(·^(·^(·^3))))_()_(7625597484987).
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Ackermann Number -- from Wolfram MathWorld
    • twitter:description
      A number of the form n^...^_()_(n)n, where Knuth up-arrow notation has been used. The first few Ackermann numbers are 1^1=1, 2^^2=4, and 3^^^3=3^(3^(·^(·^(·^3))))_()_(7625597484987).
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/AckermannNumber.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

38