
mathworld.wolfram.com/Conjunction.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
6- 32 links tomathworld.wolfram.com
- 5 links towww.wolfram.com
- 4 links towww.wolframalpha.com
- 3 links towww.amazon.com
- 1 link toreference.wolfram.com
- 1 link towolframalpha.com
Thumbnail

Search Engine Appearance
Conjunction -- from Wolfram MathWorld
A product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
Bing
Conjunction -- from Wolfram MathWorld
A product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
DuckDuckGo
Conjunction -- from Wolfram MathWorld
A product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
General Meta Tags
24- titleConjunction -- from Wolfram MathWorld
- DC.TitleConjunction
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionA product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
- descriptionA product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_Conjunction.png
- og:urlhttps://mathworld.wolfram.com/Conjunction.html
- og:typewebsite
- og:titleConjunction -- from Wolfram MathWorld
- og:descriptionA product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleConjunction -- from Wolfram MathWorld
- twitter:descriptionA product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_Conjunction.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/Conjunction.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
46- http://reference.wolfram.com/language/ref/Conjunction.html
- http://www.amazon.com/exec/obidos/ASIN/0412808307/ref=nosim/ericstreasuretro
- http://www.amazon.com/exec/obidos/ASIN/9027703809/ref=nosim/ericstreasuretro
- http://www.wolfram.com/language
- http://www.wolframalpha.com/input/?i=LU+decomposition+of+%7B%7B7%2C3%2C-11%7D%2C%7B-6%2C7%2C10%7D%2C%7B-11%2C2%2C-2%7D%7D