mathworld.wolfram.com/Conjunction.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

6

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/Conjunction.html

Conjunction -- from Wolfram MathWorld

A product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...



Bing

Conjunction -- from Wolfram MathWorld

https://mathworld.wolfram.com/Conjunction.html

A product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...



DuckDuckGo

https://mathworld.wolfram.com/Conjunction.html

Conjunction -- from Wolfram MathWorld

A product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...

  • General Meta Tags

    24
    • title
      Conjunction -- from Wolfram MathWorld
    • DC.Title
      Conjunction
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      A product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
    • description
      A product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_Conjunction.png
    • og:url
      https://mathworld.wolfram.com/Conjunction.html
    • og:type
      website
    • og:title
      Conjunction -- from Wolfram MathWorld
    • og:description
      A product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Conjunction -- from Wolfram MathWorld
    • twitter:description
      A product of ANDs, denoted ^ _(k=1)^nA_k. The conjunctions of a Boolean algebra A of subsets of cardinality p are the 2^p functions A_lambda= union _(i in lambda)A_i, where lambda subset {1,2,...,p}. For example, the 8 conjunctions of A={A_1,A_2,A_3} are emptyset, A_1, A_2, A_3, A_1A_2, A_2A_3, A_3A_1, and A_1A_2A_3 (Comtet 1974, p. 186). A literal is considered a (degenerate) conjunction (Mendelson 1997, p. 30). The Wolfram Language command Conjunction[expr, {a1, a2, ...}] gives the...
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_Conjunction.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/Conjunction.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

46