
mathworld.wolfram.com/ContravariantTensor.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
5- 33 links tomathworld.wolfram.com
- 4 links towww.amazon.com
- 4 links towww.wolfram.com
- 4 links towww.wolframalpha.com
- 1 link towolframalpha.com
Thumbnail

Search Engine Appearance
Contravariant Tensor -- from Wolfram MathWorld
A contravariant tensor is a tensor having specific transformation properties (cf., a covariant tensor). To examine the transformation properties of a contravariant tensor, first consider a tensor of rank 1 (a vector) dr=dx_1x_1^^+dx_2x_2^^+dx_3x_3^^, (1) for which dx_i^'=(partialx_i^')/(partialx_j)dx_j. (2) Now let A_i=dx_i, then any set of quantities A_j which transform according to A_i^'=(partialx_i^')/(partialx_j)A_j, (3) or, defining a_(ij)=(partialx_i^')/(partialx_j), (4) ...
Bing
Contravariant Tensor -- from Wolfram MathWorld
A contravariant tensor is a tensor having specific transformation properties (cf., a covariant tensor). To examine the transformation properties of a contravariant tensor, first consider a tensor of rank 1 (a vector) dr=dx_1x_1^^+dx_2x_2^^+dx_3x_3^^, (1) for which dx_i^'=(partialx_i^')/(partialx_j)dx_j. (2) Now let A_i=dx_i, then any set of quantities A_j which transform according to A_i^'=(partialx_i^')/(partialx_j)A_j, (3) or, defining a_(ij)=(partialx_i^')/(partialx_j), (4) ...
DuckDuckGo
Contravariant Tensor -- from Wolfram MathWorld
A contravariant tensor is a tensor having specific transformation properties (cf., a covariant tensor). To examine the transformation properties of a contravariant tensor, first consider a tensor of rank 1 (a vector) dr=dx_1x_1^^+dx_2x_2^^+dx_3x_3^^, (1) for which dx_i^'=(partialx_i^')/(partialx_j)dx_j. (2) Now let A_i=dx_i, then any set of quantities A_j which transform according to A_i^'=(partialx_i^')/(partialx_j)A_j, (3) or, defining a_(ij)=(partialx_i^')/(partialx_j), (4) ...
General Meta Tags
19- titleContravariant Tensor -- from Wolfram MathWorld
- DC.TitleContravariant Tensor
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionA contravariant tensor is a tensor having specific transformation properties (cf., a covariant tensor). To examine the transformation properties of a contravariant tensor, first consider a tensor of rank 1 (a vector) dr=dx_1x_1^^+dx_2x_2^^+dx_3x_3^^, (1) for which dx_i^'=(partialx_i^')/(partialx_j)dx_j. (2) Now let A_i=dx_i, then any set of quantities A_j which transform according to A_i^'=(partialx_i^')/(partialx_j)A_j, (3) or, defining a_(ij)=(partialx_i^')/(partialx_j), (4) ...
- descriptionA contravariant tensor is a tensor having specific transformation properties (cf., a covariant tensor). To examine the transformation properties of a contravariant tensor, first consider a tensor of rank 1 (a vector) dr=dx_1x_1^^+dx_2x_2^^+dx_3x_3^^, (1) for which dx_i^'=(partialx_i^')/(partialx_j)dx_j. (2) Now let A_i=dx_i, then any set of quantities A_j which transform according to A_i^'=(partialx_i^')/(partialx_j)A_j, (3) or, defining a_(ij)=(partialx_i^')/(partialx_j), (4) ...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_ContravariantTensor.png
- og:urlhttps://mathworld.wolfram.com/ContravariantTensor.html
- og:typewebsite
- og:titleContravariant Tensor -- from Wolfram MathWorld
- og:descriptionA contravariant tensor is a tensor having specific transformation properties (cf., a covariant tensor). To examine the transformation properties of a contravariant tensor, first consider a tensor of rank 1 (a vector) dr=dx_1x_1^^+dx_2x_2^^+dx_3x_3^^, (1) for which dx_i^'=(partialx_i^')/(partialx_j)dx_j. (2) Now let A_i=dx_i, then any set of quantities A_j which transform according to A_i^'=(partialx_i^')/(partialx_j)A_j, (3) or, defining a_(ij)=(partialx_i^')/(partialx_j), (4) ...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleContravariant Tensor -- from Wolfram MathWorld
- twitter:descriptionA contravariant tensor is a tensor having specific transformation properties (cf., a covariant tensor). To examine the transformation properties of a contravariant tensor, first consider a tensor of rank 1 (a vector) dr=dx_1x_1^^+dx_2x_2^^+dx_3x_3^^, (1) for which dx_i^'=(partialx_i^')/(partialx_j)dx_j. (2) Now let A_i=dx_i, then any set of quantities A_j which transform according to A_i^'=(partialx_i^')/(partialx_j)A_j, (3) or, defining a_(ij)=(partialx_i^')/(partialx_j), (4) ...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_ContravariantTensor.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/ContravariantTensor.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
46- http://www.amazon.com/exec/obidos/ASIN/007043316X/ref=nosim/ericstreasuretro
- http://www.amazon.com/exec/obidos/ASIN/0120598760/ref=nosim/ericstreasuretro
- http://www.amazon.com/exec/obidos/ASIN/0471925675/ref=nosim/ericstreasuretro
- http://www.wolframalpha.com/input/?i=morphological+erosion+of+plot+sin+x+with+radius+1
- https://mathworld.wolfram.com