mathworld.wolfram.com/CylindricalEquidistantProjection.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/CylindricalEquidistantProjection.html

Cylindrical Equidistant Projection -- from Wolfram MathWorld

The map projection having transformation equations x = (lambda-lambda_0)cosphi_1 (1) y = phi, (2) and the inverse formulas are phi = y (3) lambda = lambda_0+xsecphi_1, (4) The following table gives special cases of the cylindrical equidistant projection. phi_1 projection name 0 degrees equirectangular projection 37 degrees30^' Miller equidistant projection 43 degrees Miller equidistant projection 50 degrees28^' Miller equidistant projection



Bing

Cylindrical Equidistant Projection -- from Wolfram MathWorld

https://mathworld.wolfram.com/CylindricalEquidistantProjection.html

The map projection having transformation equations x = (lambda-lambda_0)cosphi_1 (1) y = phi, (2) and the inverse formulas are phi = y (3) lambda = lambda_0+xsecphi_1, (4) The following table gives special cases of the cylindrical equidistant projection. phi_1 projection name 0 degrees equirectangular projection 37 degrees30^' Miller equidistant projection 43 degrees Miller equidistant projection 50 degrees28^' Miller equidistant projection



DuckDuckGo

https://mathworld.wolfram.com/CylindricalEquidistantProjection.html

Cylindrical Equidistant Projection -- from Wolfram MathWorld

The map projection having transformation equations x = (lambda-lambda_0)cosphi_1 (1) y = phi, (2) and the inverse formulas are phi = y (3) lambda = lambda_0+xsecphi_1, (4) The following table gives special cases of the cylindrical equidistant projection. phi_1 projection name 0 degrees equirectangular projection 37 degrees30^' Miller equidistant projection 43 degrees Miller equidistant projection 50 degrees28^' Miller equidistant projection

  • General Meta Tags

    17
    • title
      Cylindrical Equidistant Projection -- from Wolfram MathWorld
    • DC.Title
      Cylindrical Equidistant Projection
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      The map projection having transformation equations x = (lambda-lambda_0)cosphi_1 (1) y = phi, (2) and the inverse formulas are phi = y (3) lambda = lambda_0+xsecphi_1, (4) The following table gives special cases of the cylindrical equidistant projection. phi_1 projection name 0 degrees equirectangular projection 37 degrees30^' Miller equidistant projection 43 degrees Miller equidistant projection 50 degrees28^' Miller equidistant projection
    • description
      The map projection having transformation equations x = (lambda-lambda_0)cosphi_1 (1) y = phi, (2) and the inverse formulas are phi = y (3) lambda = lambda_0+xsecphi_1, (4) The following table gives special cases of the cylindrical equidistant projection. phi_1 projection name 0 degrees equirectangular projection 37 degrees30^' Miller equidistant projection 43 degrees Miller equidistant projection 50 degrees28^' Miller equidistant projection
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_CylindricalEquidistantProjection.png
    • og:url
      https://mathworld.wolfram.com/CylindricalEquidistantProjection.html
    • og:type
      website
    • og:title
      Cylindrical Equidistant Projection -- from Wolfram MathWorld
    • og:description
      The map projection having transformation equations x = (lambda-lambda_0)cosphi_1 (1) y = phi, (2) and the inverse formulas are phi = y (3) lambda = lambda_0+xsecphi_1, (4) The following table gives special cases of the cylindrical equidistant projection. phi_1 projection name 0 degrees equirectangular projection 37 degrees30^' Miller equidistant projection 43 degrees Miller equidistant projection 50 degrees28^' Miller equidistant projection
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Cylindrical Equidistant Projection -- from Wolfram MathWorld
    • twitter:description
      The map projection having transformation equations x = (lambda-lambda_0)cosphi_1 (1) y = phi, (2) and the inverse formulas are phi = y (3) lambda = lambda_0+xsecphi_1, (4) The following table gives special cases of the cylindrical equidistant projection. phi_1 projection name 0 degrees equirectangular projection 37 degrees30^' Miller equidistant projection 43 degrees Miller equidistant projection 50 degrees28^' Miller equidistant projection
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_CylindricalEquidistantProjection.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/CylindricalEquidistantProjection.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

41