mathworld.wolfram.com/Jacobian.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/Jacobian.html

Jacobian -- from Wolfram MathWorld

Given a set y=f(x) of n equations in n variables x_1, ..., x_n, written explicitly as y=[f_1(x); f_2(x); |; f_n(x)], (1) or more explicitly as {y_1=f_1(x_1,...,x_n); |; y_n=f_n(x_1,...,x_n), (2) the Jacobian matrix, sometimes simply called "the Jacobian" (Simon and Blume 1994) is defined by J(x_1,...,x_n)=[(partialy_1)/(partialx_1) ... (partialy_1)/(partialx_n); | ... |; (partialy_n)/(partialx_1) ... (partialy_n)/(partialx_n)]. (3) The determinant of J is the Jacobian...



Bing

Jacobian -- from Wolfram MathWorld

https://mathworld.wolfram.com/Jacobian.html

Given a set y=f(x) of n equations in n variables x_1, ..., x_n, written explicitly as y=[f_1(x); f_2(x); |; f_n(x)], (1) or more explicitly as {y_1=f_1(x_1,...,x_n); |; y_n=f_n(x_1,...,x_n), (2) the Jacobian matrix, sometimes simply called "the Jacobian" (Simon and Blume 1994) is defined by J(x_1,...,x_n)=[(partialy_1)/(partialx_1) ... (partialy_1)/(partialx_n); | ... |; (partialy_n)/(partialx_1) ... (partialy_n)/(partialx_n)]. (3) The determinant of J is the Jacobian...



DuckDuckGo

https://mathworld.wolfram.com/Jacobian.html

Jacobian -- from Wolfram MathWorld

Given a set y=f(x) of n equations in n variables x_1, ..., x_n, written explicitly as y=[f_1(x); f_2(x); |; f_n(x)], (1) or more explicitly as {y_1=f_1(x_1,...,x_n); |; y_n=f_n(x_1,...,x_n), (2) the Jacobian matrix, sometimes simply called "the Jacobian" (Simon and Blume 1994) is defined by J(x_1,...,x_n)=[(partialy_1)/(partialx_1) ... (partialy_1)/(partialx_n); | ... |; (partialy_n)/(partialx_1) ... (partialy_n)/(partialx_n)]. (3) The determinant of J is the Jacobian...

  • General Meta Tags

    22
    • title
      Jacobian -- from Wolfram MathWorld
    • DC.Title
      Jacobian
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      Given a set y=f(x) of n equations in n variables x_1, ..., x_n, written explicitly as y=[f_1(x); f_2(x); |; f_n(x)], (1) or more explicitly as {y_1=f_1(x_1,...,x_n); |; y_n=f_n(x_1,...,x_n), (2) the Jacobian matrix, sometimes simply called "the Jacobian" (Simon and Blume 1994) is defined by J(x_1,...,x_n)=[(partialy_1)/(partialx_1) ... (partialy_1)/(partialx_n); | ... |; (partialy_n)/(partialx_1) ... (partialy_n)/(partialx_n)]. (3) The determinant of J is the Jacobian...
    • description
      Given a set y=f(x) of n equations in n variables x_1, ..., x_n, written explicitly as y=[f_1(x); f_2(x); |; f_n(x)], (1) or more explicitly as {y_1=f_1(x_1,...,x_n); |; y_n=f_n(x_1,...,x_n), (2) the Jacobian matrix, sometimes simply called "the Jacobian" (Simon and Blume 1994) is defined by J(x_1,...,x_n)=[(partialy_1)/(partialx_1) ... (partialy_1)/(partialx_n); | ... |; (partialy_n)/(partialx_1) ... (partialy_n)/(partialx_n)]. (3) The determinant of J is the Jacobian...
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_Jacobian.png
    • og:url
      https://mathworld.wolfram.com/Jacobian.html
    • og:type
      website
    • og:title
      Jacobian -- from Wolfram MathWorld
    • og:description
      Given a set y=f(x) of n equations in n variables x_1, ..., x_n, written explicitly as y=[f_1(x); f_2(x); |; f_n(x)], (1) or more explicitly as {y_1=f_1(x_1,...,x_n); |; y_n=f_n(x_1,...,x_n), (2) the Jacobian matrix, sometimes simply called "the Jacobian" (Simon and Blume 1994) is defined by J(x_1,...,x_n)=[(partialy_1)/(partialx_1) ... (partialy_1)/(partialx_n); | ... |; (partialy_n)/(partialx_1) ... (partialy_n)/(partialx_n)]. (3) The determinant of J is the Jacobian...
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Jacobian -- from Wolfram MathWorld
    • twitter:description
      Given a set y=f(x) of n equations in n variables x_1, ..., x_n, written explicitly as y=[f_1(x); f_2(x); |; f_n(x)], (1) or more explicitly as {y_1=f_1(x_1,...,x_n); |; y_n=f_n(x_1,...,x_n), (2) the Jacobian matrix, sometimes simply called "the Jacobian" (Simon and Blume 1994) is defined by J(x_1,...,x_n)=[(partialy_1)/(partialx_1) ... (partialy_1)/(partialx_n); | ... |; (partialy_n)/(partialx_1) ... (partialy_n)/(partialx_n)]. (3) The determinant of J is the Jacobian...
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_Jacobian.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/Jacobian.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

51