
mathworld.wolfram.com/NormalDifferenceDistribution.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
5- 27 links tomathworld.wolfram.com
- 4 links towww.wolfram.com
- 3 links towww.wolframalpha.com
- 1 link towolframalpha.com
- 1 link towww.amazon.com
Thumbnail

Search Engine Appearance
Normal Difference Distribution -- from Wolfram MathWorld
Amazingly, the distribution of a difference of two normally distributed variates X and Y with means and variances (mu_x,sigma_x^2) and (mu_y,sigma_y^2), respectively, is given by P_(X-Y)(u) = int_(-infty)^inftyint_(-infty)^infty(e^(-x^2/(2sigma_x^2)))/(sigma_xsqrt(2pi))(e^(-y^2/(2sigma_y^2)))/(sigma_ysqrt(2pi))delta((x-y)-u)dxdy (1) = (e^(-[u-(mu_x-mu_y)]^2/[2(sigma_x^2+sigma_y^2)]))/(sqrt(2pi(sigma_x^2+sigma_y^2))), (2) where delta(x) is a delta function, which is another normal...
Bing
Normal Difference Distribution -- from Wolfram MathWorld
Amazingly, the distribution of a difference of two normally distributed variates X and Y with means and variances (mu_x,sigma_x^2) and (mu_y,sigma_y^2), respectively, is given by P_(X-Y)(u) = int_(-infty)^inftyint_(-infty)^infty(e^(-x^2/(2sigma_x^2)))/(sigma_xsqrt(2pi))(e^(-y^2/(2sigma_y^2)))/(sigma_ysqrt(2pi))delta((x-y)-u)dxdy (1) = (e^(-[u-(mu_x-mu_y)]^2/[2(sigma_x^2+sigma_y^2)]))/(sqrt(2pi(sigma_x^2+sigma_y^2))), (2) where delta(x) is a delta function, which is another normal...
DuckDuckGo
Normal Difference Distribution -- from Wolfram MathWorld
Amazingly, the distribution of a difference of two normally distributed variates X and Y with means and variances (mu_x,sigma_x^2) and (mu_y,sigma_y^2), respectively, is given by P_(X-Y)(u) = int_(-infty)^inftyint_(-infty)^infty(e^(-x^2/(2sigma_x^2)))/(sigma_xsqrt(2pi))(e^(-y^2/(2sigma_y^2)))/(sigma_ysqrt(2pi))delta((x-y)-u)dxdy (1) = (e^(-[u-(mu_x-mu_y)]^2/[2(sigma_x^2+sigma_y^2)]))/(sqrt(2pi(sigma_x^2+sigma_y^2))), (2) where delta(x) is a delta function, which is another normal...
General Meta Tags
21- titleNormal Difference Distribution -- from Wolfram MathWorld
- DC.TitleNormal Difference Distribution
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionAmazingly, the distribution of a difference of two normally distributed variates X and Y with means and variances (mu_x,sigma_x^2) and (mu_y,sigma_y^2), respectively, is given by P_(X-Y)(u) = int_(-infty)^inftyint_(-infty)^infty(e^(-x^2/(2sigma_x^2)))/(sigma_xsqrt(2pi))(e^(-y^2/(2sigma_y^2)))/(sigma_ysqrt(2pi))delta((x-y)-u)dxdy (1) = (e^(-[u-(mu_x-mu_y)]^2/[2(sigma_x^2+sigma_y^2)]))/(sqrt(2pi(sigma_x^2+sigma_y^2))), (2) where delta(x) is a delta function, which is another normal...
- descriptionAmazingly, the distribution of a difference of two normally distributed variates X and Y with means and variances (mu_x,sigma_x^2) and (mu_y,sigma_y^2), respectively, is given by P_(X-Y)(u) = int_(-infty)^inftyint_(-infty)^infty(e^(-x^2/(2sigma_x^2)))/(sigma_xsqrt(2pi))(e^(-y^2/(2sigma_y^2)))/(sigma_ysqrt(2pi))delta((x-y)-u)dxdy (1) = (e^(-[u-(mu_x-mu_y)]^2/[2(sigma_x^2+sigma_y^2)]))/(sqrt(2pi(sigma_x^2+sigma_y^2))), (2) where delta(x) is a delta function, which is another normal...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_NormalDifferenceDistribution.png
- og:urlhttps://mathworld.wolfram.com/NormalDifferenceDistribution.html
- og:typewebsite
- og:titleNormal Difference Distribution -- from Wolfram MathWorld
- og:descriptionAmazingly, the distribution of a difference of two normally distributed variates X and Y with means and variances (mu_x,sigma_x^2) and (mu_y,sigma_y^2), respectively, is given by P_(X-Y)(u) = int_(-infty)^inftyint_(-infty)^infty(e^(-x^2/(2sigma_x^2)))/(sigma_xsqrt(2pi))(e^(-y^2/(2sigma_y^2)))/(sigma_ysqrt(2pi))delta((x-y)-u)dxdy (1) = (e^(-[u-(mu_x-mu_y)]^2/[2(sigma_x^2+sigma_y^2)]))/(sqrt(2pi(sigma_x^2+sigma_y^2))), (2) where delta(x) is a delta function, which is another normal...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleNormal Difference Distribution -- from Wolfram MathWorld
- twitter:descriptionAmazingly, the distribution of a difference of two normally distributed variates X and Y with means and variances (mu_x,sigma_x^2) and (mu_y,sigma_y^2), respectively, is given by P_(X-Y)(u) = int_(-infty)^inftyint_(-infty)^infty(e^(-x^2/(2sigma_x^2)))/(sigma_xsqrt(2pi))(e^(-y^2/(2sigma_y^2)))/(sigma_ysqrt(2pi))delta((x-y)-u)dxdy (1) = (e^(-[u-(mu_x-mu_y)]^2/[2(sigma_x^2+sigma_y^2)]))/(sqrt(2pi(sigma_x^2+sigma_y^2))), (2) where delta(x) is a delta function, which is another normal...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_NormalDifferenceDistribution.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/NormalDifferenceDistribution.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
36- http://www.wolframalpha.com/input/?i=beta+distribution
- http://www.wolframalpha.com/input/?i=bivariate+normal+distribution
- http://www.wolframalpha.com/input/?i=continuous+distributions
- https://mathworld.wolfram.com
- https://mathworld.wolfram.com/DeltaFunction.html