
mathworld.wolfram.com/RamanujanThetaFunctions.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
7- 35 links tomathworld.wolfram.com
- 4 links tooeis.org
- 4 links towww.wolfram.com
- 4 links towww.wolframalpha.com
- 2 links towww.amazon.com
- 1 link towolframalpha.com
- 1 link towww.combinatorics.org
Thumbnail

Search Engine Appearance
Ramanujan Theta Functions -- from Wolfram MathWorld
Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
Bing
Ramanujan Theta Functions -- from Wolfram MathWorld
Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
DuckDuckGo
Ramanujan Theta Functions -- from Wolfram MathWorld
Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
General Meta Tags
24- titleRamanujan Theta Functions -- from Wolfram MathWorld
- DC.TitleRamanujan Theta Functions
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionRamanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
- descriptionRamanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_RamanujanThetaFunctions.png
- og:urlhttps://mathworld.wolfram.com/RamanujanThetaFunctions.html
- og:typewebsite
- og:titleRamanujan Theta Functions -- from Wolfram MathWorld
- og:descriptionRamanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleRamanujan Theta Functions -- from Wolfram MathWorld
- twitter:descriptionRamanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_RamanujanThetaFunctions.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/RamanujanThetaFunctions.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
51- http://oeis.org/A000122
- http://oeis.org/A000700
- http://oeis.org/A010054
- http://oeis.org/A010815
- http://www.amazon.com/exec/obidos/ASIN/0387975039/ref=nosim/ericstreasuretro