mathworld.wolfram.com/RamanujanThetaFunctions.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

7

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/RamanujanThetaFunctions.html

Ramanujan Theta Functions -- from Wolfram MathWorld

Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...



Bing

Ramanujan Theta Functions -- from Wolfram MathWorld

https://mathworld.wolfram.com/RamanujanThetaFunctions.html

Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...



DuckDuckGo

https://mathworld.wolfram.com/RamanujanThetaFunctions.html

Ramanujan Theta Functions -- from Wolfram MathWorld

Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...

  • General Meta Tags

    24
    • title
      Ramanujan Theta Functions -- from Wolfram MathWorld
    • DC.Title
      Ramanujan Theta Functions
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
    • description
      Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_RamanujanThetaFunctions.png
    • og:url
      https://mathworld.wolfram.com/RamanujanThetaFunctions.html
    • og:type
      website
    • og:title
      Ramanujan Theta Functions -- from Wolfram MathWorld
    • og:description
      Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Ramanujan Theta Functions -- from Wolfram MathWorld
    • twitter:description
      Ramanujan's two-variable theta function f(a,b) is defined by f(a,b)=sum_(n=-infty)^inftya^(n(n+1)/2)b^(n(n-1)/2) (1) for |ab|<1 (Berndt 1985, p. 34; Berndt et al. 2000). It satisfies f(-1,a)=0 (2) and f(a,b) = f(b,a) (3) = (-a;ab)_infty(-b;ab)_infty(ab;ab)_infty (4) (Berndt 1985, pp. 34-35; Berndt et al. 2000), where (a;q)_k is a q-Pochhammer symbol, i.e., a q-series. A one-argument form of f(a,b) is also defined by f(-q) = f(-q,-q^2) (5) = (q;q)_infty (6) =...
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_RamanujanThetaFunctions.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/RamanujanThetaFunctions.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

51