mathworld.wolfram.com/RegularNumber.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

6

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/RegularNumber.html

Regular Number -- from Wolfram MathWorld

A regular number, also called a finite decimal (Havil 2003, p. 25), is a positive number that has a finite decimal expansion. A number such as 1/3=0.33333... which is not regular is said to be nonregular. If r=p/q is a regular number, then r = (a_1)/(10)+(a_2)/(10^2)+...+(a_n)/(10^n) (1) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(10^n) (2) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(2^n·5^n). (3) Factoring possible common multiples gives r=p/(2^alpha5^beta), (4) where p≢0 (mod 2, 5)....



Bing

Regular Number -- from Wolfram MathWorld

https://mathworld.wolfram.com/RegularNumber.html

A regular number, also called a finite decimal (Havil 2003, p. 25), is a positive number that has a finite decimal expansion. A number such as 1/3=0.33333... which is not regular is said to be nonregular. If r=p/q is a regular number, then r = (a_1)/(10)+(a_2)/(10^2)+...+(a_n)/(10^n) (1) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(10^n) (2) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(2^n·5^n). (3) Factoring possible common multiples gives r=p/(2^alpha5^beta), (4) where p≢0 (mod 2, 5)....



DuckDuckGo

https://mathworld.wolfram.com/RegularNumber.html

Regular Number -- from Wolfram MathWorld

A regular number, also called a finite decimal (Havil 2003, p. 25), is a positive number that has a finite decimal expansion. A number such as 1/3=0.33333... which is not regular is said to be nonregular. If r=p/q is a regular number, then r = (a_1)/(10)+(a_2)/(10^2)+...+(a_n)/(10^n) (1) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(10^n) (2) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(2^n·5^n). (3) Factoring possible common multiples gives r=p/(2^alpha5^beta), (4) where p≢0 (mod 2, 5)....

  • General Meta Tags

    19
    • title
      Regular Number -- from Wolfram MathWorld
    • DC.Title
      Regular Number
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      A regular number, also called a finite decimal (Havil 2003, p. 25), is a positive number that has a finite decimal expansion. A number such as 1/3=0.33333... which is not regular is said to be nonregular. If r=p/q is a regular number, then r = (a_1)/(10)+(a_2)/(10^2)+...+(a_n)/(10^n) (1) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(10^n) (2) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(2^n·5^n). (3) Factoring possible common multiples gives r=p/(2^alpha5^beta), (4) where p≢0 (mod 2, 5)....
    • description
      A regular number, also called a finite decimal (Havil 2003, p. 25), is a positive number that has a finite decimal expansion. A number such as 1/3=0.33333... which is not regular is said to be nonregular. If r=p/q is a regular number, then r = (a_1)/(10)+(a_2)/(10^2)+...+(a_n)/(10^n) (1) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(10^n) (2) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(2^n·5^n). (3) Factoring possible common multiples gives r=p/(2^alpha5^beta), (4) where p≢0 (mod 2, 5)....
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_RegularNumber.png
    • og:url
      https://mathworld.wolfram.com/RegularNumber.html
    • og:type
      website
    • og:title
      Regular Number -- from Wolfram MathWorld
    • og:description
      A regular number, also called a finite decimal (Havil 2003, p. 25), is a positive number that has a finite decimal expansion. A number such as 1/3=0.33333... which is not regular is said to be nonregular. If r=p/q is a regular number, then r = (a_1)/(10)+(a_2)/(10^2)+...+(a_n)/(10^n) (1) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(10^n) (2) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(2^n·5^n). (3) Factoring possible common multiples gives r=p/(2^alpha5^beta), (4) where p≢0 (mod 2, 5)....
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Regular Number -- from Wolfram MathWorld
    • twitter:description
      A regular number, also called a finite decimal (Havil 2003, p. 25), is a positive number that has a finite decimal expansion. A number such as 1/3=0.33333... which is not regular is said to be nonregular. If r=p/q is a regular number, then r = (a_1)/(10)+(a_2)/(10^2)+...+(a_n)/(10^n) (1) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(10^n) (2) = (a_110^(n-1)+a_210^(n-2)+...+a_n)/(2^n·5^n). (3) Factoring possible common multiples gives r=p/(2^alpha5^beta), (4) where p≢0 (mod 2, 5)....
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share/ogimage_RegularNumber.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/RegularNumber.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

42