
mathworld.wolfram.com/UnitSquareIntegral.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
8- 48 links tomathworld.wolfram.com
- 4 links towww.wolfram.com
- 4 links towww.wolframalpha.com
- 3 links towww.amazon.com
- 2 links toarxiv.org
- 2 links tooeis.org
- 1 link towolframalpha.com
- 1 link towww.combinatorics.org
Thumbnail

Search Engine Appearance
Unit Square Integral -- from Wolfram MathWorld
Integrals over the unit square arising in geometric probability are int_0^1int_0^1sqrt(x^2+y^2)dxdy=1/3[sqrt(2)+sinh^(-1)(1)] int_0^1int_0^1sqrt((x-1/2)^2+(y-1/2)^2)dxdy =1/6[sqrt(2)+sinh^(-1)(1)], (1) which give the average distances in square point picking from a point picked at random in a unit square to a corner and to the center, respectively. Unit square integrals involving the absolute value are given by int_0^1int_0^1|x-y|^ndxdy = 2/((n+1)(n+2)) (2) int_0^1int_0^1|x+y|^ndxdy...
Bing
Unit Square Integral -- from Wolfram MathWorld
Integrals over the unit square arising in geometric probability are int_0^1int_0^1sqrt(x^2+y^2)dxdy=1/3[sqrt(2)+sinh^(-1)(1)] int_0^1int_0^1sqrt((x-1/2)^2+(y-1/2)^2)dxdy =1/6[sqrt(2)+sinh^(-1)(1)], (1) which give the average distances in square point picking from a point picked at random in a unit square to a corner and to the center, respectively. Unit square integrals involving the absolute value are given by int_0^1int_0^1|x-y|^ndxdy = 2/((n+1)(n+2)) (2) int_0^1int_0^1|x+y|^ndxdy...
DuckDuckGo
Unit Square Integral -- from Wolfram MathWorld
Integrals over the unit square arising in geometric probability are int_0^1int_0^1sqrt(x^2+y^2)dxdy=1/3[sqrt(2)+sinh^(-1)(1)] int_0^1int_0^1sqrt((x-1/2)^2+(y-1/2)^2)dxdy =1/6[sqrt(2)+sinh^(-1)(1)], (1) which give the average distances in square point picking from a point picked at random in a unit square to a corner and to the center, respectively. Unit square integrals involving the absolute value are given by int_0^1int_0^1|x-y|^ndxdy = 2/((n+1)(n+2)) (2) int_0^1int_0^1|x+y|^ndxdy...
General Meta Tags
27- titleUnit Square Integral -- from Wolfram MathWorld
- DC.TitleUnit Square Integral
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionIntegrals over the unit square arising in geometric probability are int_0^1int_0^1sqrt(x^2+y^2)dxdy=1/3[sqrt(2)+sinh^(-1)(1)] int_0^1int_0^1sqrt((x-1/2)^2+(y-1/2)^2)dxdy =1/6[sqrt(2)+sinh^(-1)(1)], (1) which give the average distances in square point picking from a point picked at random in a unit square to a corner and to the center, respectively. Unit square integrals involving the absolute value are given by int_0^1int_0^1|x-y|^ndxdy = 2/((n+1)(n+2)) (2) int_0^1int_0^1|x+y|^ndxdy...
- descriptionIntegrals over the unit square arising in geometric probability are int_0^1int_0^1sqrt(x^2+y^2)dxdy=1/3[sqrt(2)+sinh^(-1)(1)] int_0^1int_0^1sqrt((x-1/2)^2+(y-1/2)^2)dxdy =1/6[sqrt(2)+sinh^(-1)(1)], (1) which give the average distances in square point picking from a point picked at random in a unit square to a corner and to the center, respectively. Unit square integrals involving the absolute value are given by int_0^1int_0^1|x-y|^ndxdy = 2/((n+1)(n+2)) (2) int_0^1int_0^1|x+y|^ndxdy...
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_UnitSquareIntegral.png
- og:urlhttps://mathworld.wolfram.com/UnitSquareIntegral.html
- og:typewebsite
- og:titleUnit Square Integral -- from Wolfram MathWorld
- og:descriptionIntegrals over the unit square arising in geometric probability are int_0^1int_0^1sqrt(x^2+y^2)dxdy=1/3[sqrt(2)+sinh^(-1)(1)] int_0^1int_0^1sqrt((x-1/2)^2+(y-1/2)^2)dxdy =1/6[sqrt(2)+sinh^(-1)(1)], (1) which give the average distances in square point picking from a point picked at random in a unit square to a corner and to the center, respectively. Unit square integrals involving the absolute value are given by int_0^1int_0^1|x-y|^ndxdy = 2/((n+1)(n+2)) (2) int_0^1int_0^1|x+y|^ndxdy...
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleUnit Square Integral -- from Wolfram MathWorld
- twitter:descriptionIntegrals over the unit square arising in geometric probability are int_0^1int_0^1sqrt(x^2+y^2)dxdy=1/3[sqrt(2)+sinh^(-1)(1)] int_0^1int_0^1sqrt((x-1/2)^2+(y-1/2)^2)dxdy =1/6[sqrt(2)+sinh^(-1)(1)], (1) which give the average distances in square point picking from a point picked at random in a unit square to a corner and to the center, respectively. Unit square integrals involving the absolute value are given by int_0^1int_0^1|x-y|^ndxdy = 2/((n+1)(n+2)) (2) int_0^1int_0^1|x+y|^ndxdy...
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share/ogimage_UnitSquareIntegral.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/UnitSquareIntegral.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
65- http://arxiv.org/abs/math.NT/0209070
- http://arxiv.org/abs/math.NT/0506319
- http://oeis.org/A093753
- http://oeis.org/A093754
- http://www.amazon.com/exec/obidos/ASIN/1568811365/ref=nosim/ericstreasuretro