mathworld.wolfram.com/ZeckendorfRepresentation.html

Preview meta tags from the mathworld.wolfram.com website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://mathworld.wolfram.com/ZeckendorfRepresentation.html

Zeckendorf Representation -- from Wolfram MathWorld

The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.



Bing

Zeckendorf Representation -- from Wolfram MathWorld

https://mathworld.wolfram.com/ZeckendorfRepresentation.html

The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.



DuckDuckGo

https://mathworld.wolfram.com/ZeckendorfRepresentation.html

Zeckendorf Representation -- from Wolfram MathWorld

The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.

  • General Meta Tags

    19
    • title
      Zeckendorf Representation -- from Wolfram MathWorld
    • DC.Title
      Zeckendorf Representation
    • DC.Creator
      Weisstein, Eric W.
    • DC.Description
      The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
    • description
      The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
  • Open Graph Meta Tags

    5
    • og:image
      https://mathworld.wolfram.com/images/socialmedia/share.png
    • og:url
      https://mathworld.wolfram.com/ZeckendorfRepresentation.html
    • og:type
      website
    • og:title
      Zeckendorf Representation -- from Wolfram MathWorld
    • og:description
      The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
  • Twitter Meta Tags

    5
    • twitter:card
      summary_large_image
    • twitter:site
      @WolframResearch
    • twitter:title
      Zeckendorf Representation -- from Wolfram MathWorld
    • twitter:description
      The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
    • twitter:image:src
      https://mathworld.wolfram.com/images/socialmedia/share.png
  • Link Tags

    4
    • canonical
      https://mathworld.wolfram.com/ZeckendorfRepresentation.html
    • preload
      //www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
    • stylesheet
      /css/styles.css
    • stylesheet
      /common/js/c2c/1.0/WolframC2CGui.css.en

Links

37