
mathworld.wolfram.com/ZeckendorfRepresentation.html
Preview meta tags from the mathworld.wolfram.com website.
Linked Hostnames
5- 25 links tomathworld.wolfram.com
- 4 links towww.wolfram.com
- 4 links towww.wolframalpha.com
- 3 links towww.amazon.com
- 1 link towolframalpha.com
Thumbnail

Search Engine Appearance
Zeckendorf Representation -- from Wolfram MathWorld
The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
Bing
Zeckendorf Representation -- from Wolfram MathWorld
The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
DuckDuckGo
Zeckendorf Representation -- from Wolfram MathWorld
The Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
General Meta Tags
19- titleZeckendorf Representation -- from Wolfram MathWorld
- DC.TitleZeckendorf Representation
- DC.CreatorWeisstein, Eric W.
- DC.DescriptionThe Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
- descriptionThe Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
Open Graph Meta Tags
5- og:imagehttps://mathworld.wolfram.com/images/socialmedia/share.png
- og:urlhttps://mathworld.wolfram.com/ZeckendorfRepresentation.html
- og:typewebsite
- og:titleZeckendorf Representation -- from Wolfram MathWorld
- og:descriptionThe Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
Twitter Meta Tags
5- twitter:cardsummary_large_image
- twitter:site@WolframResearch
- twitter:titleZeckendorf Representation -- from Wolfram MathWorld
- twitter:descriptionThe Zeckendorf representation of a positive integer n is a representation of n as a sum of nonconsecutive distinct Fibonacci numbers, n=sum_(k=2)^Lepsilon_kF_k, where epsilon_k are 0 or 1 and epsilon_kepsilon_(k+1)=0. Every positive integer can be written uniquely in such a form.
- twitter:image:srchttps://mathworld.wolfram.com/images/socialmedia/share.png
Link Tags
4- canonicalhttps://mathworld.wolfram.com/ZeckendorfRepresentation.html
- preload//www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css
- stylesheet/css/styles.css
- stylesheet/common/js/c2c/1.0/WolframC2CGui.css.en
Links
37- http://www.amazon.com/exec/obidos/ASIN/0201558025/ref=nosim/ericstreasuretro
- http://www.amazon.com/exec/obidos/ASIN/0685479412/ref=nosim/ericstreasuretro
- http://www.wolframalpha.com/input/?i=Fibonacci+numbers
- https://mathworld.wolfram.com
- https://mathworld.wolfram.com/FibonacciCubeGraph.html