projecteuclid.org/journals/Duke-Mathematical-Journal/volume-164/issue-13/Delocalization-of-eigenvectors-of-random-matrices-with-independent-entries/10.1215/00127094-3129809.full
Preview meta tags from the projecteuclid.org website.
Linked Hostnames
4Thumbnail
Search Engine Appearance
https://projecteuclid.org/journals/Duke-Mathematical-Journal/volume-164/issue-13/Delocalization-of-eigenvectors-of-random-matrices-with-independent-entries/10.1215/00127094-3129809.full
Delocalization of eigenvectors of random matrices with independent entries
Duke Mathematical Journal
Bing
Delocalization of eigenvectors of random matrices with independent entries
https://projecteuclid.org/journals/Duke-Mathematical-Journal/volume-164/issue-13/Delocalization-of-eigenvectors-of-random-matrices-with-independent-entries/10.1215/00127094-3129809.full
Duke Mathematical Journal
DuckDuckGo
https://projecteuclid.org/journals/Duke-Mathematical-Journal/volume-164/issue-13/Delocalization-of-eigenvectors-of-random-matrices-with-independent-entries/10.1215/00127094-3129809.full
Delocalization of eigenvectors of random matrices with independent entries
Duke Mathematical Journal
General Meta Tags
43- titleDelocalization of eigenvectors of random matrices with independent entries
- charsetUTF-8
- descriptionDuke Mathematical Journal
- keywords
- citation_journal_titleDuke Mathematical Journal
Open Graph Meta Tags
9- og:typePaper
- og:urlhttps://projecteuclid.org/journals/duke-mathematical-journal/volume-164/issue-13/Delocalization-of-eigenvectors-of-random-matrices-with-independent-entries/10.1215/00127094-3129809.full
- og:titleDelocalization of eigenvectors of random matrices with independent entries
- og:descriptionWe prove that an n×n random matrix G with independent entries is completely delocalized. Suppose that the entries of G have zero means, variances uniformly bounded below, and a uniform tail decay of exponential type. Then with high probability all unit eigenvectors of G have all coordinates of magnitude O(n−1/2), modulo logarithmic corrections. This comes as a consequence of a new, geometric approach to delocalization for random matrices.
- publish_date2015-10-01T00:00:00-07:00
Link Tags
9- apple-touch-icon/apple-touch-icon.png
- icon/favicon.png
- preloadhttps://use.typekit.net/aot8jlq.css
- preloadhttps://fonts.googleapis.com/css?family=Open+Sans:300,400,600,700&display=swap
- schema.DChttp://purl.org/DC/elements/1.0
Emails
1Links
32- https://mathscinet.ams.org/mathscinet-getitem?mr=MR3405592
- https://projecteuclid.org
- https://projecteuclid.org/Account/institutionalsignin?redirect=https%3a%2f%2fprojecteuclid.org%2fjournals%2fduke-mathematical-journal%2fvolume-164%2fissue-13%2fDelocalization-of-eigenvectors-of-random-matrices-with-independent-entries%2f10.1215%2f00127094-3129809.short
- https://projecteuclid.org/about
- https://projecteuclid.org/account/details