projecteuclid.org/journals/Duke-Mathematical-Journal/volume-164/issue-13/Delocalization-of-eigenvectors-of-random-matrices-with-independent-entries/10.1215/00127094-3129809.full

Preview meta tags from the projecteuclid.org website.

Linked Hostnames

4

Thumbnail

Search Engine Appearance

Google

https://projecteuclid.org/journals/Duke-Mathematical-Journal/volume-164/issue-13/Delocalization-of-eigenvectors-of-random-matrices-with-independent-entries/10.1215/00127094-3129809.full

Delocalization of eigenvectors of random matrices with independent entries

Duke Mathematical Journal



Bing

Delocalization of eigenvectors of random matrices with independent entries

https://projecteuclid.org/journals/Duke-Mathematical-Journal/volume-164/issue-13/Delocalization-of-eigenvectors-of-random-matrices-with-independent-entries/10.1215/00127094-3129809.full

Duke Mathematical Journal



DuckDuckGo

https://projecteuclid.org/journals/Duke-Mathematical-Journal/volume-164/issue-13/Delocalization-of-eigenvectors-of-random-matrices-with-independent-entries/10.1215/00127094-3129809.full

Delocalization of eigenvectors of random matrices with independent entries

Duke Mathematical Journal

  • General Meta Tags

    43
    • title
      Delocalization of eigenvectors of random matrices with independent entries
    • charset
      UTF-8
    • description
      Duke Mathematical Journal
    • keywords
    • citation_journal_title
      Duke Mathematical Journal
  • Open Graph Meta Tags

    9
    • og:type
      Paper
    • og:url
      https://projecteuclid.org/journals/duke-mathematical-journal/volume-164/issue-13/Delocalization-of-eigenvectors-of-random-matrices-with-independent-entries/10.1215/00127094-3129809.full
    • og:title
      Delocalization of eigenvectors of random matrices with independent entries
    • og:description
      We prove that an n×n random matrix G with independent entries is completely delocalized. Suppose that the entries of G have zero means, variances uniformly bounded below, and a uniform tail decay of exponential type. Then with high probability all unit eigenvectors of G have all coordinates of magnitude O(n−1/2), modulo logarithmic corrections. This comes as a consequence of a new, geometric approach to delocalization for random matrices.
    • publish_date
      2015-10-01T00:00:00-07:00
  • Link Tags

    9
    • apple-touch-icon
      /apple-touch-icon.png
    • icon
      /favicon.png
    • preload
      https://use.typekit.net/aot8jlq.css
    • preload
      https://fonts.googleapis.com/css?family=Open+Sans:300,400,600,700&display=swap
    • schema.DC
      http://purl.org/DC/elements/1.0

Emails

1

Links

32