projecteuclid.org/journals/Tohoku-Mathematical-Journal/volume-71/issue-4/Relative-algebro-geometric-stabilities-of-toric-manifolds/10.2748/tmj/1576724790.short
Preview meta tags from the projecteuclid.org website.
Linked Hostnames
4Thumbnail
Search Engine Appearance
https://projecteuclid.org/journals/Tohoku-Mathematical-Journal/volume-71/issue-4/Relative-algebro-geometric-stabilities-of-toric-manifolds/10.2748/tmj/1576724790.short
Relative algebro-geometric stabilities of toric manifolds
Tohoku Mathematical Journal
Bing
Relative algebro-geometric stabilities of toric manifolds
https://projecteuclid.org/journals/Tohoku-Mathematical-Journal/volume-71/issue-4/Relative-algebro-geometric-stabilities-of-toric-manifolds/10.2748/tmj/1576724790.short
Tohoku Mathematical Journal
DuckDuckGo
https://projecteuclid.org/journals/Tohoku-Mathematical-Journal/volume-71/issue-4/Relative-algebro-geometric-stabilities-of-toric-manifolds/10.2748/tmj/1576724790.short
Relative algebro-geometric stabilities of toric manifolds
Tohoku Mathematical Journal
General Meta Tags
43- titleRelative algebro-geometric stabilities of toric manifolds
- charsetUTF-8
- descriptionTohoku Mathematical Journal
- keywords
- citation_journal_titleTohoku Mathematical Journal
Open Graph Meta Tags
9- og:typePaper
- og:urlhttps://projecteuclid.org/journals/tohoku-mathematical-journal/volume-71/issue-4/Relative-algebro-geometric-stabilities-of-toric-manifolds/10.2748/tmj/1576724790.full
- og:titleRelative algebro-geometric stabilities of toric manifolds
- og:descriptionIn this paper we study the relative Chow and $K$-stability of toric manifolds. First, we give a criterion for relative $K$-stability and instability of toric Fano manifolds in the toric sense. The reduction of relative Chow stability on toric manifolds will be investigated using the Hibert-Mumford criterion in two ways. One is to consider the maximal torus action and its weight polytope. We obtain a reduction by the strategy of Ono [34], which fits into the relative GIT stability detected by Székelyhidi. The other way relies on $\mathbb{C}^*$-actions and Chow weights associated to toric degenerations following Donaldson and Ross-Thomas [13, 36]. In the end, we determine the relative $K$-stability of all toric Fano threefolds and present counter-examples which are relatively $K$-stable in the toric sense but which are asymptotically relatively Chow unstable.
- publish_date2019-12-01T00:00:00-08:00
Link Tags
9- apple-touch-icon/apple-touch-icon.png
- icon/favicon.png
- preloadhttps://use.typekit.net/aot8jlq.css
- preloadhttps://fonts.googleapis.com/css?family=Open+Sans:300,400,600,700&display=swap
- schema.DChttp://purl.org/DC/elements/1.0
Emails
1Links
32- https://mathscinet.ams.org/mathscinet-getitem?mr=MR4043922
- https://projecteuclid.org
- https://projecteuclid.org/Account/institutionalsignin?redirect=https%3a%2f%2fprojecteuclid.org%2fjournals%2fTohoku-Mathematical-Journal%2fvolume-71%2fissue-4%2fRelative-algebro-geometric-stabilities-of-toric-manifolds%2f10.2748%2ftmj%2f1576724790.short
- https://projecteuclid.org/about
- https://projecteuclid.org/account/details