projecteuclid.org/journals/Tohoku-Mathematical-Journal/volume-71/issue-4/Relative-algebro-geometric-stabilities-of-toric-manifolds/10.2748/tmj/1576724790.short

Preview meta tags from the projecteuclid.org website.

Linked Hostnames

4

Thumbnail

Search Engine Appearance

Google

https://projecteuclid.org/journals/Tohoku-Mathematical-Journal/volume-71/issue-4/Relative-algebro-geometric-stabilities-of-toric-manifolds/10.2748/tmj/1576724790.short

Relative algebro-geometric stabilities of toric manifolds

Tohoku Mathematical Journal



Bing

Relative algebro-geometric stabilities of toric manifolds

https://projecteuclid.org/journals/Tohoku-Mathematical-Journal/volume-71/issue-4/Relative-algebro-geometric-stabilities-of-toric-manifolds/10.2748/tmj/1576724790.short

Tohoku Mathematical Journal



DuckDuckGo

https://projecteuclid.org/journals/Tohoku-Mathematical-Journal/volume-71/issue-4/Relative-algebro-geometric-stabilities-of-toric-manifolds/10.2748/tmj/1576724790.short

Relative algebro-geometric stabilities of toric manifolds

Tohoku Mathematical Journal

  • General Meta Tags

    43
    • title
      Relative algebro-geometric stabilities of toric manifolds
    • charset
      UTF-8
    • description
      Tohoku Mathematical Journal
    • keywords
    • citation_journal_title
      Tohoku Mathematical Journal
  • Open Graph Meta Tags

    9
    • og:type
      Paper
    • og:url
      https://projecteuclid.org/journals/tohoku-mathematical-journal/volume-71/issue-4/Relative-algebro-geometric-stabilities-of-toric-manifolds/10.2748/tmj/1576724790.full
    • og:title
      Relative algebro-geometric stabilities of toric manifolds
    • og:description
      In this paper we study the relative Chow and $K$-stability of toric manifolds. First, we give a criterion for relative $K$-stability and instability of toric Fano manifolds in the toric sense. The reduction of relative Chow stability on toric manifolds will be investigated using the Hibert-Mumford criterion in two ways. One is to consider the maximal torus action and its weight polytope. We obtain a reduction by the strategy of Ono [34], which fits into the relative GIT stability detected by Székelyhidi. The other way relies on $\mathbb{C}^*$-actions and Chow weights associated to toric degenerations following Donaldson and Ross-Thomas [13, 36]. In the end, we determine the relative $K$-stability of all toric Fano threefolds and present counter-examples which are relatively $K$-stable in the toric sense but which are asymptotically relatively Chow unstable.
    • publish_date
      2019-12-01T00:00:00-08:00
  • Link Tags

    9
    • apple-touch-icon
      /apple-touch-icon.png
    • icon
      /favicon.png
    • preload
      https://use.typekit.net/aot8jlq.css
    • preload
      https://fonts.googleapis.com/css?family=Open+Sans:300,400,600,700&display=swap
    • schema.DC
      http://purl.org/DC/elements/1.0

Emails

1

Links

32