www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003887
Preview meta tags from the www.ploscompbiol.org website.
Linked Hostnames
13- 69 links towww.ploscompbiol.org
- 63 links toscholar.google.com
- 18 links todoi.org
- 9 links toplos.org
- 1 link toblogs.plos.org
- 1 link tobsky.app
- 1 link tocollections.plos.org
- 1 link tocreativecommons.org
Thumbnail
Search Engine Appearance
Spectral Signatures of Reorganised Brain Networks in Disorders of Consciousness
Author Summary What are the neural signatures of consciousness? This is an elusive yet fascinating challenge to current cognitive neuroscience, but it takes on an immediate clinical and societal significance in patients diagnosed as vegetative and minimally conscious. In these patients, it leads us to ask whether we can test for the presence of these signatures in the absence of any external signs of awareness. Recent conceptual advances suggest that consciousness requires a dynamic balance between integrated and differentiated networks of information exchange between brain regions. Here we apply this insight to study such networks in patients and compare them to healthy adults. Using the science of graph theory, we show that the rich and diversely connected networks that support awareness are characteristically impaired in patients, lacking the ability to efficiently integrate information across disparate regions via well-connected hubs. We find that the quality of patients' networks also correlates well with their degree of behavioural responsiveness, and some vegetative patients who show signs of hidden awareness have remarkably well-preserved networks similar to healthy adults. Overall, our research highlights distinctive network signatures of pathological unconsciousness, which could improve clinical assessment and help identify patients who are aware despite being uncommunicative.
Bing
Spectral Signatures of Reorganised Brain Networks in Disorders of Consciousness
Author Summary What are the neural signatures of consciousness? This is an elusive yet fascinating challenge to current cognitive neuroscience, but it takes on an immediate clinical and societal significance in patients diagnosed as vegetative and minimally conscious. In these patients, it leads us to ask whether we can test for the presence of these signatures in the absence of any external signs of awareness. Recent conceptual advances suggest that consciousness requires a dynamic balance between integrated and differentiated networks of information exchange between brain regions. Here we apply this insight to study such networks in patients and compare them to healthy adults. Using the science of graph theory, we show that the rich and diversely connected networks that support awareness are characteristically impaired in patients, lacking the ability to efficiently integrate information across disparate regions via well-connected hubs. We find that the quality of patients' networks also correlates well with their degree of behavioural responsiveness, and some vegetative patients who show signs of hidden awareness have remarkably well-preserved networks similar to healthy adults. Overall, our research highlights distinctive network signatures of pathological unconsciousness, which could improve clinical assessment and help identify patients who are aware despite being uncommunicative.
DuckDuckGo
Spectral Signatures of Reorganised Brain Networks in Disorders of Consciousness
Author Summary What are the neural signatures of consciousness? This is an elusive yet fascinating challenge to current cognitive neuroscience, but it takes on an immediate clinical and societal significance in patients diagnosed as vegetative and minimally conscious. In these patients, it leads us to ask whether we can test for the presence of these signatures in the absence of any external signs of awareness. Recent conceptual advances suggest that consciousness requires a dynamic balance between integrated and differentiated networks of information exchange between brain regions. Here we apply this insight to study such networks in patients and compare them to healthy adults. Using the science of graph theory, we show that the rich and diversely connected networks that support awareness are characteristically impaired in patients, lacking the ability to efficiently integrate information across disparate regions via well-connected hubs. We find that the quality of patients' networks also correlates well with their degree of behavioural responsiveness, and some vegetative patients who show signs of hidden awareness have remarkably well-preserved networks similar to healthy adults. Overall, our research highlights distinctive network signatures of pathological unconsciousness, which could improve clinical assessment and help identify patients who are aware despite being uncommunicative.
General Meta Tags
118- titleSpectral Signatures of Reorganised Brain Networks in Disorders of Consciousness | PLOS Computational Biology
- Content-Typetext/html; charset=utf-8
- descriptionAuthor Summary What are the neural signatures of consciousness? This is an elusive yet fascinating challenge to current cognitive neuroscience, but it takes on an immediate clinical and societal significance in patients diagnosed as vegetative and minimally conscious. In these patients, it leads us to ask whether we can test for the presence of these signatures in the absence of any external signs of awareness. Recent conceptual advances suggest that consciousness requires a dynamic balance between integrated and differentiated networks of information exchange between brain regions. Here we apply this insight to study such networks in patients and compare them to healthy adults. Using the science of graph theory, we show that the rich and diversely connected networks that support awareness are characteristically impaired in patients, lacking the ability to efficiently integrate information across disparate regions via well-connected hubs. We find that the quality of patients' networks also correlates well with their degree of behavioural responsiveness, and some vegetative patients who show signs of hidden awareness have remarkably well-preserved networks similar to healthy adults. Overall, our research highlights distinctive network signatures of pathological unconsciousness, which could improve clinical assessment and help identify patients who are aware despite being uncommunicative.
- citation_abstractTheoretical advances in the science of consciousness have proposed that it is concomitant with balanced cortical integration and differentiation, enabled by efficient networks of information transfer across multiple scales. Here, we apply graph theory to compare key signatures of such networks in high-density electroencephalographic data from 32 patients with chronic disorders of consciousness, against normative data from healthy controls. Based on connectivity within canonical frequency bands, we found that patient networks had reduced local and global efficiency, and fewer hubs in the alpha band. We devised a novel topographical metric, termed modular span, which showed that the alpha network modules in patients were also spatially circumscribed, lacking the structured long-distance interactions commonly observed in the healthy controls. Importantly however, these differences between graph-theoretic metrics were partially reversed in delta and theta band networks, which were also significantly more similar to each other in patients than controls. Going further, we found that metrics of alpha network efficiency also correlated with the degree of behavioural awareness. Intriguingly, some patients in behaviourally unresponsive vegetative states who demonstrated evidence of covert awareness with functional neuroimaging stood out from this trend: they had alpha networks that were remarkably well preserved and similar to those observed in the controls. Taken together, our findings inform current understanding of disorders of consciousness by highlighting the distinctive brain networks that characterise them. In the significant minority of vegetative patients who follow commands in neuroimaging tests, they point to putative network mechanisms that could support cognitive function and consciousness despite profound behavioural impairment.
- keywordsNeural networks,Electroencephalography,Consciousness,Network analysis,Anoxia,Functional magnetic resonance imaging,Brain damage,Eye movements
Open Graph Meta Tags
5- og:typearticle
- og:urlhttps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003887
- og:titleSpectral Signatures of Reorganised Brain Networks in Disorders of Consciousness
- og:descriptionAuthor Summary What are the neural signatures of consciousness? This is an elusive yet fascinating challenge to current cognitive neuroscience, but it takes on an immediate clinical and societal significance in patients diagnosed as vegetative and minimally conscious. In these patients, it leads us to ask whether we can test for the presence of these signatures in the absence of any external signs of awareness. Recent conceptual advances suggest that consciousness requires a dynamic balance between integrated and differentiated networks of information exchange between brain regions. Here we apply this insight to study such networks in patients and compare them to healthy adults. Using the science of graph theory, we show that the rich and diversely connected networks that support awareness are characteristically impaired in patients, lacking the ability to efficiently integrate information across disparate regions via well-connected hubs. We find that the quality of patients' networks also correlates well with their degree of behavioural responsiveness, and some vegetative patients who show signs of hidden awareness have remarkably well-preserved networks similar to healthy adults. Overall, our research highlights distinctive network signatures of pathological unconsciousness, which could improve clinical assessment and help identify patients who are aware despite being uncommunicative.
- og:imagehttps://journals.plos.org/ploscompbiol/article/figure/image?id=10.1371/journal.pcbi.1003887.g007&size=inline
Twitter Meta Tags
3- twitter:cardsummary
- twitter:siteploscompbiol
- twitter:titleSpectral Signatures of Reorganised Brain Networks in Disorders of Consciousness
Item Prop Meta Tags
1- nameSpectral Signatures of Reorganised Brain Networks in Disorders of Consciousness
Link Tags
5- canonicalhttps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003887
- shortcut icon/resource/img/favicon.ico
- stylesheet/resource/css/screen.css?c74e939b589ca13037d4e7a8e8d4f467
- stylesheethttps://fonts.googleapis.com/css?family=Open+Sans:400,400i,600
- stylesheet/resource/css/print.css
Emails
4- [email protected]
- [email protected]
- ?subject=Spectral Signatures of Reorganised Brain Networks in Disorders of Consciousness&body=I%20thought%20you%20would%20find%20this%20article%20interesting.%20From%20PLOS Computational Biology:%20https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcbi.1003887
- [email protected]
Links
168- http://creativecommons.org/licenses/by/4.0
- http://scholar.google.com/scholar?q=A+Resilient%2C+Low-Frequency%2C+Small-World+Human+Brain+Functional+Network+with+Highly+Connected+Association+Cortical+Hubs+Achard+2006
- http://scholar.google.com/scholar?q=A+Simple+Sequentially+Rejective+Multiple+Test+Procedure+Holm+1979
- http://scholar.google.com/scholar?q=A+role+for+the+default+mode+network+in+the+bases+of+disorders+of+consciousness+Fernandez-Espejo+2012
- http://scholar.google.com/scholar?q=A+theoretically+based+index+of+consciousness+independent+of+sensory+processing+and+behavior+Casali+2013