www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004786

Preview meta tags from the www.ploscompbiol.org website.

Linked Hostnames

23

Thumbnail

Search Engine Appearance

Google

https://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004786

Effective Design of Multifunctional Peptides by Combining Compatible Functions

Author Summary Most proteins and peptides in nature display multiple activities either by fusing different domains (with different activities) or by evolving multiple activities in a single domain. Understanding which activities may be combined to render multifunctional proteins remains an open question relevant to understanding the organization of living organisms and to improve the design of pharmacological peptides. To address this problem, we introduce the concept of compatible activities, that is, activities that may combine without losing any of these in a single polypeptide chain. To identify compatible activities in peptide sequences, we used a machine-learning approach and discovered that a penetrating activity should be compatible with DNA-binding and antimicrobial activities. To test if these activities may combine without any functional loss, we designed peptide sequences that harbor two independent activities (nuclear localization and pheromone) and experimentally showed that all our designed peptides display penetrability, pheromone, antimicrobial and DNA-binding activities, supporting the idea that multifunctionality may be achieved combining compatible activities.



Bing

Effective Design of Multifunctional Peptides by Combining Compatible Functions

https://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004786

Author Summary Most proteins and peptides in nature display multiple activities either by fusing different domains (with different activities) or by evolving multiple activities in a single domain. Understanding which activities may be combined to render multifunctional proteins remains an open question relevant to understanding the organization of living organisms and to improve the design of pharmacological peptides. To address this problem, we introduce the concept of compatible activities, that is, activities that may combine without losing any of these in a single polypeptide chain. To identify compatible activities in peptide sequences, we used a machine-learning approach and discovered that a penetrating activity should be compatible with DNA-binding and antimicrobial activities. To test if these activities may combine without any functional loss, we designed peptide sequences that harbor two independent activities (nuclear localization and pheromone) and experimentally showed that all our designed peptides display penetrability, pheromone, antimicrobial and DNA-binding activities, supporting the idea that multifunctionality may be achieved combining compatible activities.



DuckDuckGo

https://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004786

Effective Design of Multifunctional Peptides by Combining Compatible Functions

Author Summary Most proteins and peptides in nature display multiple activities either by fusing different domains (with different activities) or by evolving multiple activities in a single domain. Understanding which activities may be combined to render multifunctional proteins remains an open question relevant to understanding the organization of living organisms and to improve the design of pharmacological peptides. To address this problem, we introduce the concept of compatible activities, that is, activities that may combine without losing any of these in a single polypeptide chain. To identify compatible activities in peptide sequences, we used a machine-learning approach and discovered that a penetrating activity should be compatible with DNA-binding and antimicrobial activities. To test if these activities may combine without any functional loss, we designed peptide sequences that harbor two independent activities (nuclear localization and pheromone) and experimentally showed that all our designed peptides display penetrability, pheromone, antimicrobial and DNA-binding activities, supporting the idea that multifunctionality may be achieved combining compatible activities.

  • General Meta Tags

    79
    • title
      Effective Design of Multifunctional Peptides by Combining Compatible Functions | PLOS Computational Biology
    • Content-Type
      text/html; charset=utf-8
    • description
      Author Summary Most proteins and peptides in nature display multiple activities either by fusing different domains (with different activities) or by evolving multiple activities in a single domain. Understanding which activities may be combined to render multifunctional proteins remains an open question relevant to understanding the organization of living organisms and to improve the design of pharmacological peptides. To address this problem, we introduce the concept of compatible activities, that is, activities that may combine without losing any of these in a single polypeptide chain. To identify compatible activities in peptide sequences, we used a machine-learning approach and discovered that a penetrating activity should be compatible with DNA-binding and antimicrobial activities. To test if these activities may combine without any functional loss, we designed peptide sequences that harbor two independent activities (nuclear localization and pheromone) and experimentally showed that all our designed peptides display penetrability, pheromone, antimicrobial and DNA-binding activities, supporting the idea that multifunctionality may be achieved combining compatible activities.
    • citation_abstract
      Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf.
    • keywords
      Pheromones,Antibacterials,Yeast,DNA-binding proteins,Protein domains,Saccharomyces cerevisiae,Fluorescence imaging,Signal peptides
  • Open Graph Meta Tags

    5
    • og:type
      article
    • og:url
      https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004786
    • og:title
      Effective Design of Multifunctional Peptides by Combining Compatible Functions
    • og:description
      Author Summary Most proteins and peptides in nature display multiple activities either by fusing different domains (with different activities) or by evolving multiple activities in a single domain. Understanding which activities may be combined to render multifunctional proteins remains an open question relevant to understanding the organization of living organisms and to improve the design of pharmacological peptides. To address this problem, we introduce the concept of compatible activities, that is, activities that may combine without losing any of these in a single polypeptide chain. To identify compatible activities in peptide sequences, we used a machine-learning approach and discovered that a penetrating activity should be compatible with DNA-binding and antimicrobial activities. To test if these activities may combine without any functional loss, we designed peptide sequences that harbor two independent activities (nuclear localization and pheromone) and experimentally showed that all our designed peptides display penetrability, pheromone, antimicrobial and DNA-binding activities, supporting the idea that multifunctionality may be achieved combining compatible activities.
    • og:image
      https://journals.plos.org/ploscompbiol/article/figure/image?id=10.1371/journal.pcbi.1004786.g007&size=inline
  • Twitter Meta Tags

    3
    • twitter:card
      summary
    • twitter:site
      ploscompbiol
    • twitter:title
      Effective Design of Multifunctional Peptides by Combining Compatible Functions
  • Item Prop Meta Tags

    1
    • name
      Effective Design of Multifunctional Peptides by Combining Compatible Functions
  • Link Tags

    5
    • canonical
      https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004786
    • shortcut icon
      /resource/img/favicon.ico
    • stylesheet
      /resource/css/screen.css?c74e939b589ca13037d4e7a8e8d4f467
    • stylesheet
      https://fonts.googleapis.com/css?family=Open+Sans:400,400i,600
    • stylesheet
      /resource/css/print.css

Emails

3
  • [email protected]
  • ?subject=Effective Design of Multifunctional Peptides by Combining Compatible Functions&body=I%20thought%20you%20would%20find%20this%20article%20interesting.%20From%20PLOS Computational Biology:%20https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcbi.1004786
  • [email protected]

Links

240