www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004786
Preview meta tags from the www.ploscompbiol.org website.
Linked Hostnames
23- 69 links towww.ploscompbiol.org
- 57 links todoi.org
- 45 links toscholar.google.com
- 37 links towww.ncbi.nlm.nih.gov
- 9 links toplos.org
- 3 links togithub.com
- 2 links tobis.ifc.unam.mx
- 2 links tofiji.sc
Thumbnail
Search Engine Appearance
Effective Design of Multifunctional Peptides by Combining Compatible Functions
Author Summary Most proteins and peptides in nature display multiple activities either by fusing different domains (with different activities) or by evolving multiple activities in a single domain. Understanding which activities may be combined to render multifunctional proteins remains an open question relevant to understanding the organization of living organisms and to improve the design of pharmacological peptides. To address this problem, we introduce the concept of compatible activities, that is, activities that may combine without losing any of these in a single polypeptide chain. To identify compatible activities in peptide sequences, we used a machine-learning approach and discovered that a penetrating activity should be compatible with DNA-binding and antimicrobial activities. To test if these activities may combine without any functional loss, we designed peptide sequences that harbor two independent activities (nuclear localization and pheromone) and experimentally showed that all our designed peptides display penetrability, pheromone, antimicrobial and DNA-binding activities, supporting the idea that multifunctionality may be achieved combining compatible activities.
Bing
Effective Design of Multifunctional Peptides by Combining Compatible Functions
Author Summary Most proteins and peptides in nature display multiple activities either by fusing different domains (with different activities) or by evolving multiple activities in a single domain. Understanding which activities may be combined to render multifunctional proteins remains an open question relevant to understanding the organization of living organisms and to improve the design of pharmacological peptides. To address this problem, we introduce the concept of compatible activities, that is, activities that may combine without losing any of these in a single polypeptide chain. To identify compatible activities in peptide sequences, we used a machine-learning approach and discovered that a penetrating activity should be compatible with DNA-binding and antimicrobial activities. To test if these activities may combine without any functional loss, we designed peptide sequences that harbor two independent activities (nuclear localization and pheromone) and experimentally showed that all our designed peptides display penetrability, pheromone, antimicrobial and DNA-binding activities, supporting the idea that multifunctionality may be achieved combining compatible activities.
DuckDuckGo
Effective Design of Multifunctional Peptides by Combining Compatible Functions
Author Summary Most proteins and peptides in nature display multiple activities either by fusing different domains (with different activities) or by evolving multiple activities in a single domain. Understanding which activities may be combined to render multifunctional proteins remains an open question relevant to understanding the organization of living organisms and to improve the design of pharmacological peptides. To address this problem, we introduce the concept of compatible activities, that is, activities that may combine without losing any of these in a single polypeptide chain. To identify compatible activities in peptide sequences, we used a machine-learning approach and discovered that a penetrating activity should be compatible with DNA-binding and antimicrobial activities. To test if these activities may combine without any functional loss, we designed peptide sequences that harbor two independent activities (nuclear localization and pheromone) and experimentally showed that all our designed peptides display penetrability, pheromone, antimicrobial and DNA-binding activities, supporting the idea that multifunctionality may be achieved combining compatible activities.
General Meta Tags
79- titleEffective Design of Multifunctional Peptides by Combining Compatible Functions | PLOS Computational Biology
- Content-Typetext/html; charset=utf-8
- descriptionAuthor Summary Most proteins and peptides in nature display multiple activities either by fusing different domains (with different activities) or by evolving multiple activities in a single domain. Understanding which activities may be combined to render multifunctional proteins remains an open question relevant to understanding the organization of living organisms and to improve the design of pharmacological peptides. To address this problem, we introduce the concept of compatible activities, that is, activities that may combine without losing any of these in a single polypeptide chain. To identify compatible activities in peptide sequences, we used a machine-learning approach and discovered that a penetrating activity should be compatible with DNA-binding and antimicrobial activities. To test if these activities may combine without any functional loss, we designed peptide sequences that harbor two independent activities (nuclear localization and pheromone) and experimentally showed that all our designed peptides display penetrability, pheromone, antimicrobial and DNA-binding activities, supporting the idea that multifunctionality may be achieved combining compatible activities.
- citation_abstractMultifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf.
- keywordsPheromones,Antibacterials,Yeast,DNA-binding proteins,Protein domains,Saccharomyces cerevisiae,Fluorescence imaging,Signal peptides
Open Graph Meta Tags
5- og:typearticle
- og:urlhttps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004786
- og:titleEffective Design of Multifunctional Peptides by Combining Compatible Functions
- og:descriptionAuthor Summary Most proteins and peptides in nature display multiple activities either by fusing different domains (with different activities) or by evolving multiple activities in a single domain. Understanding which activities may be combined to render multifunctional proteins remains an open question relevant to understanding the organization of living organisms and to improve the design of pharmacological peptides. To address this problem, we introduce the concept of compatible activities, that is, activities that may combine without losing any of these in a single polypeptide chain. To identify compatible activities in peptide sequences, we used a machine-learning approach and discovered that a penetrating activity should be compatible with DNA-binding and antimicrobial activities. To test if these activities may combine without any functional loss, we designed peptide sequences that harbor two independent activities (nuclear localization and pheromone) and experimentally showed that all our designed peptides display penetrability, pheromone, antimicrobial and DNA-binding activities, supporting the idea that multifunctionality may be achieved combining compatible activities.
- og:imagehttps://journals.plos.org/ploscompbiol/article/figure/image?id=10.1371/journal.pcbi.1004786.g007&size=inline
Twitter Meta Tags
3- twitter:cardsummary
- twitter:siteploscompbiol
- twitter:titleEffective Design of Multifunctional Peptides by Combining Compatible Functions
Item Prop Meta Tags
1- nameEffective Design of Multifunctional Peptides by Combining Compatible Functions
Link Tags
5- canonicalhttps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004786
- shortcut icon/resource/img/favicon.ico
- stylesheet/resource/css/screen.css?c74e939b589ca13037d4e7a8e8d4f467
- stylesheethttps://fonts.googleapis.com/css?family=Open+Sans:400,400i,600
- stylesheet/resource/css/print.css
Emails
3- [email protected]
- ?subject=Effective Design of Multifunctional Peptides by Combining Compatible Functions&body=I%20thought%20you%20would%20find%20this%20article%20interesting.%20From%20PLOS Computational Biology:%20https%3A%2F%2Fdx.plos.org%2F10.1371%2Fjournal.pcbi.1004786
- [email protected]
Links
240- http://bis.ifc.unam.mx/en/software/dcf
- http://bis.ifc.unam.mx/software/dcf
- http://creativecommons.org/licenses/by/4.0
- http://dx.doi.org/10.5281/zenodo.30278
- http://fiji.sc