www.springer.com/engineering/circuits+&+systems/book/978-1-4419-1538-2
Preview meta tags from the www.springer.com website.
Linked Hostnames
17- 37 links towww.springer.com
- 14 links tolink.springer.com
- 11 links towww.springernature.com
- 3 links tosupport.springernature.com
- 2 links tosingle-ebooks.springernature.com
- 1 link toauthorservices.springernature.com
- 1 link toextras.springer.com
- 1 link toidp.springer.com
Thumbnail

Search Engine Appearance
Design and Verification of Microprocessor Systems for High-Assurance Applications
Microprocessors increasingly control and monitor our most critical systems, including automobiles, airliners, medical systems, transportation grids, and defense systems. The relentless march of semiconductor process technology has given engineers exponentially increasing transistor budgets at constant recurring cost. This has encouraged increased functional integration onto a single die, as well as increased architectural sophistication of the functional units themselves. Additionally, design cycle times are decreasing, thus putting increased schedule pressure on engineers. Not surprisingly, this environment has led to a number of uncaught design flaws. Traditional simulation-based design verification has not kept up with the scale or pace of modern microprocessor system design. Formal verification methods offer the promise of improved bug-finding capability, as well as the ability to establish functional correctness of a detailed design relative to a high-level specification. However, widespread use of formal methods has had to await breakthroughs in automated reasoning, integration with engineering design languages and processes, scalability, and usability. This book presents several breakthrough design and verification techniques that allow these powerful formal methods to be employed in the real world of high-assurance microprocessor system design.
Bing
Design and Verification of Microprocessor Systems for High-Assurance Applications
Microprocessors increasingly control and monitor our most critical systems, including automobiles, airliners, medical systems, transportation grids, and defense systems. The relentless march of semiconductor process technology has given engineers exponentially increasing transistor budgets at constant recurring cost. This has encouraged increased functional integration onto a single die, as well as increased architectural sophistication of the functional units themselves. Additionally, design cycle times are decreasing, thus putting increased schedule pressure on engineers. Not surprisingly, this environment has led to a number of uncaught design flaws. Traditional simulation-based design verification has not kept up with the scale or pace of modern microprocessor system design. Formal verification methods offer the promise of improved bug-finding capability, as well as the ability to establish functional correctness of a detailed design relative to a high-level specification. However, widespread use of formal methods has had to await breakthroughs in automated reasoning, integration with engineering design languages and processes, scalability, and usability. This book presents several breakthrough design and verification techniques that allow these powerful formal methods to be employed in the real world of high-assurance microprocessor system design.
DuckDuckGo
Design and Verification of Microprocessor Systems for High-Assurance Applications
Microprocessors increasingly control and monitor our most critical systems, including automobiles, airliners, medical systems, transportation grids, and defense systems. The relentless march of semiconductor process technology has given engineers exponentially increasing transistor budgets at constant recurring cost. This has encouraged increased functional integration onto a single die, as well as increased architectural sophistication of the functional units themselves. Additionally, design cycle times are decreasing, thus putting increased schedule pressure on engineers. Not surprisingly, this environment has led to a number of uncaught design flaws. Traditional simulation-based design verification has not kept up with the scale or pace of modern microprocessor system design. Formal verification methods offer the promise of improved bug-finding capability, as well as the ability to establish functional correctness of a detailed design relative to a high-level specification. However, widespread use of formal methods has had to await breakthroughs in automated reasoning, integration with engineering design languages and processes, scalability, and usability. This book presents several breakthrough design and verification techniques that allow these powerful formal methods to be employed in the real world of high-assurance microprocessor system design.
General Meta Tags
11- titleDesign and Verification of Microprocessor Systems for High-Assurance Applications | SpringerLink
- charsetUTF-8
- X-UA-CompatibleIE=edge
- viewportwidth=device-width, initial-scale=1
- applicable-devicepc,mobile
Open Graph Meta Tags
5- og:urlhttps://link.springer.com/book/10.1007/978-1-4419-1539-9
- og:typebook
- og:site_nameSpringerLink
- og:titleDesign and Verification of Microprocessor Systems for High-Assurance Applications
- og:imagehttps://media.springernature.com/w153/springer-static/cover/book/978-1-4419-1539-9.jpg
Item Prop Meta Tags
2- position1
- position2
Link Tags
9- apple-touch-icon/oscar-static/img/favicons/darwin/apple-touch-icon-6ef0829b9c.png
- canonicalhttps://link.springer.com/book/10.1007/978-1-4419-1539-9
- icon/oscar-static/img/favicons/darwin/android-chrome-192x192.png
- icon/oscar-static/img/favicons/darwin/favicon-32x32.png
- icon/oscar-static/img/favicons/darwin/favicon-16x16.png
Links
79- http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22David+S.+Hardin%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
- http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=David+S.+Hardin
- https://authorservices.springernature.com/go/sn/?utm_source=SNLinkfooter&utm_medium=Web&utm_campaign=SNReferral
- https://extras.springer.com/?query=978-1-4419-1538-2
- https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/book/10.1007/978-1-4419-1539-9?