codecut.ai/beartype-fast-efficient-runtime-type-checking-for-python

Preview meta tags from the codecut.ai website.

Linked Hostnames

5

Thumbnail

Search Engine Appearance

Google

https://codecut.ai/beartype-fast-efficient-runtime-type-checking-for-python

Beartype: Fast, Efficient Runtime Type Checking for Python

Khuyen Tran Beartype vs Static Type Checking Static type checkers like mypy perform type checking only during development/compile time. This means that type errors may not be caught until runtime, potentially causing issues. Let’s consider the following example: # typehint.py def calculate_statistics(data: list[float]) -> dict[str, float]: return { "mean": sum(data) / len(data), "first": data[0] } numbers = [1, "a", 3] # mypy error, but code will run result = calculate_statistics(numbers) # Fails at runtime during sum() Running mypy on this code will raise an error, but the code will still run. $ mypy typehint.py typehint.py:8: error: Argument 1 to "calculate_statistics" has incompatible type "list[object]"; expected "list[float]" [arg-type] Found 1 error in 1 file (checked 1 source file) However, running the code will raise a TypeError at runtime. $ python typehint.py Traceback (most recent call last): File "typehint.py", line 8, in <module> > result = calculate_statistics(numbers) # Fails at runtime during sum() > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | numbers = [1, 'a', 3] File "typehint.py", line 3, in calculate_statistics > "mean": sum(data) / len(data), > ^^^^^^^^^ | data = [1, 'a', 3] TypeError: unsupported operand type(s) for +: 'int' and 'str' Beartype is a runtime type checker that enhances type safety by performing type verification at runtime. This catches issues that static analysis might overlook. from beartype import beartype @beartype def calculate_statistics(data: list[float]) -> dict[str, float]: return { "mean": sum(data) / len(data), "first": data[0] } # Fast runtime checking with clear errors numbers = [1, "a", 3] result = calculate_statistics(numbers) --------------------------------------------------------------------------- BeartypeCallHintParamViolation Traceback (most recent call last) Cell In[15], line 12 10 # Fast runtime checking with clear errors 11 numbers = [1, "a", 3] ---> 12 result = calculate_statistics(numbers) BeartypeCallHintParamViolation: Function calculate_statistics() parameter data=[1, 'a', 3] violates type hint list[float], as list index 0 item int 1 not instance of float. Beartype vs Pydantic Pydantic is another popular library for runtime type checking. However, it adds overhead during model creation and validation. from pydantic import BaseModel from typing import List class StatisticsInput(BaseModel): data: List[float] class StatisticsOutput(BaseModel): mean: float first: float def calculate_statistics(input_data: StatisticsInput) -> StatisticsOutput: return StatisticsOutput( mean=sum(input_data.data) / len(input_data.data), first=input_data.data[0] ) # Validates during model creation, but adds overhead numbers = [1, "a", 3] input_model = StatisticsInput(data=numbers) --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) Cell In[14], line 19 17 # Validates during model creation, but adds overhead 18 numbers = [1, "a", 3] ---> 19 input_model = StatisticsInput(data=numbers) ValidationError: 1 validation error for StatisticsInput data.1 Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='a', input_type=str] Beartype offers efficient runtime type checking with constant time complexity. Its dynamic wrappers around functions and methods enable flexible and efficient type-checking, making it a great choice for ensuring type safety in your code. Link to Beartype. Favorite



Bing

Beartype: Fast, Efficient Runtime Type Checking for Python

https://codecut.ai/beartype-fast-efficient-runtime-type-checking-for-python

Khuyen Tran Beartype vs Static Type Checking Static type checkers like mypy perform type checking only during development/compile time. This means that type errors may not be caught until runtime, potentially causing issues. Let’s consider the following example: # typehint.py def calculate_statistics(data: list[float]) -> dict[str, float]: return { "mean": sum(data) / len(data), "first": data[0] } numbers = [1, "a", 3] # mypy error, but code will run result = calculate_statistics(numbers) # Fails at runtime during sum() Running mypy on this code will raise an error, but the code will still run. $ mypy typehint.py typehint.py:8: error: Argument 1 to "calculate_statistics" has incompatible type "list[object]"; expected "list[float]" [arg-type] Found 1 error in 1 file (checked 1 source file) However, running the code will raise a TypeError at runtime. $ python typehint.py Traceback (most recent call last): File "typehint.py", line 8, in <module> > result = calculate_statistics(numbers) # Fails at runtime during sum() > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | numbers = [1, 'a', 3] File "typehint.py", line 3, in calculate_statistics > "mean": sum(data) / len(data), > ^^^^^^^^^ | data = [1, 'a', 3] TypeError: unsupported operand type(s) for +: 'int' and 'str' Beartype is a runtime type checker that enhances type safety by performing type verification at runtime. This catches issues that static analysis might overlook. from beartype import beartype @beartype def calculate_statistics(data: list[float]) -> dict[str, float]: return { "mean": sum(data) / len(data), "first": data[0] } # Fast runtime checking with clear errors numbers = [1, "a", 3] result = calculate_statistics(numbers) --------------------------------------------------------------------------- BeartypeCallHintParamViolation Traceback (most recent call last) Cell In[15], line 12 10 # Fast runtime checking with clear errors 11 numbers = [1, "a", 3] ---> 12 result = calculate_statistics(numbers) BeartypeCallHintParamViolation: Function calculate_statistics() parameter data=[1, 'a', 3] violates type hint list[float], as list index 0 item int 1 not instance of float. Beartype vs Pydantic Pydantic is another popular library for runtime type checking. However, it adds overhead during model creation and validation. from pydantic import BaseModel from typing import List class StatisticsInput(BaseModel): data: List[float] class StatisticsOutput(BaseModel): mean: float first: float def calculate_statistics(input_data: StatisticsInput) -> StatisticsOutput: return StatisticsOutput( mean=sum(input_data.data) / len(input_data.data), first=input_data.data[0] ) # Validates during model creation, but adds overhead numbers = [1, "a", 3] input_model = StatisticsInput(data=numbers) --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) Cell In[14], line 19 17 # Validates during model creation, but adds overhead 18 numbers = [1, "a", 3] ---> 19 input_model = StatisticsInput(data=numbers) ValidationError: 1 validation error for StatisticsInput data.1 Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='a', input_type=str] Beartype offers efficient runtime type checking with constant time complexity. Its dynamic wrappers around functions and methods enable flexible and efficient type-checking, making it a great choice for ensuring type safety in your code. Link to Beartype. Favorite



DuckDuckGo

https://codecut.ai/beartype-fast-efficient-runtime-type-checking-for-python

Beartype: Fast, Efficient Runtime Type Checking for Python

Khuyen Tran Beartype vs Static Type Checking Static type checkers like mypy perform type checking only during development/compile time. This means that type errors may not be caught until runtime, potentially causing issues. Let’s consider the following example: # typehint.py def calculate_statistics(data: list[float]) -> dict[str, float]: return { "mean": sum(data) / len(data), "first": data[0] } numbers = [1, "a", 3] # mypy error, but code will run result = calculate_statistics(numbers) # Fails at runtime during sum() Running mypy on this code will raise an error, but the code will still run. $ mypy typehint.py typehint.py:8: error: Argument 1 to "calculate_statistics" has incompatible type "list[object]"; expected "list[float]" [arg-type] Found 1 error in 1 file (checked 1 source file) However, running the code will raise a TypeError at runtime. $ python typehint.py Traceback (most recent call last): File "typehint.py", line 8, in <module> > result = calculate_statistics(numbers) # Fails at runtime during sum() > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | numbers = [1, 'a', 3] File "typehint.py", line 3, in calculate_statistics > "mean": sum(data) / len(data), > ^^^^^^^^^ | data = [1, 'a', 3] TypeError: unsupported operand type(s) for +: 'int' and 'str' Beartype is a runtime type checker that enhances type safety by performing type verification at runtime. This catches issues that static analysis might overlook. from beartype import beartype @beartype def calculate_statistics(data: list[float]) -> dict[str, float]: return { "mean": sum(data) / len(data), "first": data[0] } # Fast runtime checking with clear errors numbers = [1, "a", 3] result = calculate_statistics(numbers) --------------------------------------------------------------------------- BeartypeCallHintParamViolation Traceback (most recent call last) Cell In[15], line 12 10 # Fast runtime checking with clear errors 11 numbers = [1, "a", 3] ---> 12 result = calculate_statistics(numbers) BeartypeCallHintParamViolation: Function calculate_statistics() parameter data=[1, 'a', 3] violates type hint list[float], as list index 0 item int 1 not instance of float. Beartype vs Pydantic Pydantic is another popular library for runtime type checking. However, it adds overhead during model creation and validation. from pydantic import BaseModel from typing import List class StatisticsInput(BaseModel): data: List[float] class StatisticsOutput(BaseModel): mean: float first: float def calculate_statistics(input_data: StatisticsInput) -> StatisticsOutput: return StatisticsOutput( mean=sum(input_data.data) / len(input_data.data), first=input_data.data[0] ) # Validates during model creation, but adds overhead numbers = [1, "a", 3] input_model = StatisticsInput(data=numbers) --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) Cell In[14], line 19 17 # Validates during model creation, but adds overhead 18 numbers = [1, "a", 3] ---> 19 input_model = StatisticsInput(data=numbers) ValidationError: 1 validation error for StatisticsInput data.1 Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='a', input_type=str] Beartype offers efficient runtime type checking with constant time complexity. Its dynamic wrappers around functions and methods enable flexible and efficient type-checking, making it a great choice for ensuring type safety in your code. Link to Beartype. Favorite

  • General Meta Tags

    10
    • title
      Beartype: Fast, Efficient Runtime Type Checking for Python | CodeCut
    • charset
      UTF-8
    • viewport
      width=device-width, initial-scale=1
    • robots
      index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1
    • article:published_time
      2024-11-26T20:54:22+00:00
  • Open Graph Meta Tags

    10
    • US country flagog:locale
      en_US
    • og:type
      article
    • og:title
      Beartype: Fast, Efficient Runtime Type Checking for Python
    • og:description
      Khuyen Tran Beartype vs Static Type Checking Static type checkers like mypy perform type checking only during development/compile time. This means that type errors may not be caught until runtime, potentially causing issues. Let’s consider the following example: # typehint.py def calculate_statistics(data: list[float]) -> dict[str, float]: return { "mean": sum(data) / len(data), "first": data[0] } numbers = [1, "a", 3] # mypy error, but code will run result = calculate_statistics(numbers) # Fails at runtime during sum() Running mypy on this code will raise an error, but the code will still run. $ mypy typehint.py typehint.py:8: error: Argument 1 to "calculate_statistics" has incompatible type "list[object]"; expected "list[float]" [arg-type] Found 1 error in 1 file (checked 1 source file) However, running the code will raise a TypeError at runtime. $ python typehint.py Traceback (most recent call last): File "typehint.py", line 8, in <module> > result = calculate_statistics(numbers) # Fails at runtime during sum() > ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | numbers = [1, 'a', 3] File "typehint.py", line 3, in calculate_statistics > "mean": sum(data) / len(data), > ^^^^^^^^^ | data = [1, 'a', 3] TypeError: unsupported operand type(s) for +: 'int' and 'str' Beartype is a runtime type checker that enhances type safety by performing type verification at runtime. This catches issues that static analysis might overlook. from beartype import beartype @beartype def calculate_statistics(data: list[float]) -> dict[str, float]: return { "mean": sum(data) / len(data), "first": data[0] } # Fast runtime checking with clear errors numbers = [1, "a", 3] result = calculate_statistics(numbers) --------------------------------------------------------------------------- BeartypeCallHintParamViolation Traceback (most recent call last) Cell In[15], line 12 10 # Fast runtime checking with clear errors 11 numbers = [1, "a", 3] ---> 12 result = calculate_statistics(numbers) BeartypeCallHintParamViolation: Function calculate_statistics() parameter data=[1, 'a', 3] violates type hint list[float], as list index 0 item int 1 not instance of float. Beartype vs Pydantic Pydantic is another popular library for runtime type checking. However, it adds overhead during model creation and validation. from pydantic import BaseModel from typing import List class StatisticsInput(BaseModel): data: List[float] class StatisticsOutput(BaseModel): mean: float first: float def calculate_statistics(input_data: StatisticsInput) -> StatisticsOutput: return StatisticsOutput( mean=sum(input_data.data) / len(input_data.data), first=input_data.data[0] ) # Validates during model creation, but adds overhead numbers = [1, "a", 3] input_model = StatisticsInput(data=numbers) --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) Cell In[14], line 19 17 # Validates during model creation, but adds overhead 18 numbers = [1, "a", 3] ---> 19 input_model = StatisticsInput(data=numbers) ValidationError: 1 validation error for StatisticsInput data.1 Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='a', input_type=str] Beartype offers efficient runtime type checking with constant time complexity. Its dynamic wrappers around functions and methods enable flexible and efficient type-checking, making it a great choice for ensuring type safety in your code. Link to Beartype. Favorite
    • og:url
      https://codecut.ai/beartype-fast-efficient-runtime-type-checking-for-python/
  • Twitter Meta Tags

    4
    • twitter:label1
      Written by
    • twitter:data1
      Khuyen Tran
    • twitter:label2
      Est. reading time
    • twitter:data2
      2 minutes
  • Link Tags

    96
    • apple-touch-icon
      https://codecut.ai/wp-content/uploads/2023/12/cropped-icon-1_icon-1-1-180x180.png
    • canonical
      https://codecut.ai/beartype-fast-efficient-runtime-type-checking-for-python/
    • dns-prefetch
      //www.googletagmanager.com
    • dns-prefetch
      //fonts.googleapis.com
    • dns-prefetch
      //cdnjs.cloudflare.com

Emails

1

Links

20