math.answers.com/algebra/Can_there_be_a_real_and_imaginary_solution_to_a_quadratic_equation

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/algebra/Can_there_be_a_real_and_imaginary_solution_to_a_quadratic_equation

Can there be a real and imaginary solution to a quadratic equation? - Answers

Yes, there can be a pure imaginary imaginary solution, as i2 =-1 and -i2 = 1. Or there can be a pure real solution or there can be a complex solution.For a quadratic equation ax2+ bx + c = 0, it depends on the value of the discriminant [b2 - 4ac], which is the value inside the radical of the quadratic formula.[b2 - 4ac] > 0 : Two distinct real solutions.[b2 - 4ac] = 0 : Two equal real solutions (double root).[b2 - 4ac] < 0 : Two complex solutions; they will be pure imaginary if b = 0, they will have both real and imaginary parts if b is nonzero.



Bing

Can there be a real and imaginary solution to a quadratic equation? - Answers

https://math.answers.com/algebra/Can_there_be_a_real_and_imaginary_solution_to_a_quadratic_equation

Yes, there can be a pure imaginary imaginary solution, as i2 =-1 and -i2 = 1. Or there can be a pure real solution or there can be a complex solution.For a quadratic equation ax2+ bx + c = 0, it depends on the value of the discriminant [b2 - 4ac], which is the value inside the radical of the quadratic formula.[b2 - 4ac] > 0 : Two distinct real solutions.[b2 - 4ac] = 0 : Two equal real solutions (double root).[b2 - 4ac] < 0 : Two complex solutions; they will be pure imaginary if b = 0, they will have both real and imaginary parts if b is nonzero.



DuckDuckGo

https://math.answers.com/algebra/Can_there_be_a_real_and_imaginary_solution_to_a_quadratic_equation

Can there be a real and imaginary solution to a quadratic equation? - Answers

Yes, there can be a pure imaginary imaginary solution, as i2 =-1 and -i2 = 1. Or there can be a pure real solution or there can be a complex solution.For a quadratic equation ax2+ bx + c = 0, it depends on the value of the discriminant [b2 - 4ac], which is the value inside the radical of the quadratic formula.[b2 - 4ac] > 0 : Two distinct real solutions.[b2 - 4ac] = 0 : Two equal real solutions (double root).[b2 - 4ac] < 0 : Two complex solutions; they will be pure imaginary if b = 0, they will have both real and imaginary parts if b is nonzero.

  • General Meta Tags

    22
    • title
      Can there be a real and imaginary solution to a quadratic equation? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      Yes, there can be a pure imaginary imaginary solution, as i2 =-1 and -i2 = 1. Or there can be a pure real solution or there can be a complex solution.For a quadratic equation ax2+ bx + c = 0, it depends on the value of the discriminant [b2 - 4ac], which is the value inside the radical of the quadratic formula.[b2 - 4ac] > 0 : Two distinct real solutions.[b2 - 4ac] = 0 : Two equal real solutions (double root).[b2 - 4ac] < 0 : Two complex solutions; they will be pure imaginary if b = 0, they will have both real and imaginary parts if b is nonzero.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/algebra/Can_there_be_a_real_and_imaginary_solution_to_a_quadratic_equation
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58