math.answers.com/algebra/Can_you_multiply_two_irrational_numbers_to_get_a_rational_number
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 18 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Can you multiply two irrational numbers to get a rational number? - Answers
Yes, for example sqrt(2) * sqrt(18) = 6. Note: here sqrt(n) represents the square root (second root) of n. To simplify this expression we obtain: sqrt(2) * sqrt(18) = sqrt(2) * sqrt(2) * sqrt(9) = 2 * 3 = 6. Generally, it is easy to create cases where two or more Irrational Numbers are multiplied to create a rational number using roots. The definition of the root clearly relates it back to rational numbers. This task becomes more difficult and even impossible if certain combinations of numbers are not allowed (e.g. transcendental numbers, no direct roots, etc.).
Bing
Can you multiply two irrational numbers to get a rational number? - Answers
Yes, for example sqrt(2) * sqrt(18) = 6. Note: here sqrt(n) represents the square root (second root) of n. To simplify this expression we obtain: sqrt(2) * sqrt(18) = sqrt(2) * sqrt(2) * sqrt(9) = 2 * 3 = 6. Generally, it is easy to create cases where two or more Irrational Numbers are multiplied to create a rational number using roots. The definition of the root clearly relates it back to rational numbers. This task becomes more difficult and even impossible if certain combinations of numbers are not allowed (e.g. transcendental numbers, no direct roots, etc.).
DuckDuckGo
Can you multiply two irrational numbers to get a rational number? - Answers
Yes, for example sqrt(2) * sqrt(18) = 6. Note: here sqrt(n) represents the square root (second root) of n. To simplify this expression we obtain: sqrt(2) * sqrt(18) = sqrt(2) * sqrt(2) * sqrt(9) = 2 * 3 = 6. Generally, it is easy to create cases where two or more Irrational Numbers are multiplied to create a rational number using roots. The definition of the root clearly relates it back to rational numbers. This task becomes more difficult and even impossible if certain combinations of numbers are not allowed (e.g. transcendental numbers, no direct roots, etc.).
General Meta Tags
22- titleCan you multiply two irrational numbers to get a rational number? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionYes, for example sqrt(2) * sqrt(18) = 6. Note: here sqrt(n) represents the square root (second root) of n. To simplify this expression we obtain: sqrt(2) * sqrt(18) = sqrt(2) * sqrt(2) * sqrt(9) = 2 * 3 = 6. Generally, it is easy to create cases where two or more Irrational Numbers are multiplied to create a rational number using roots. The definition of the root clearly relates it back to rational numbers. This task becomes more difficult and even impossible if certain combinations of numbers are not allowed (e.g. transcendental numbers, no direct roots, etc.).
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/algebra/Can_you_multiply_two_irrational_numbers_to_get_a_rational_number
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/algebra/1_gallon_equals
- https://math.answers.com/algebra/A_15feet_ladder_leaning_against_a_bulding_touches_the_wall_12_feet_above_the_ground._How_far_from_the_building_is_the_bottom_of_the_ladder
- https://math.answers.com/algebra/Can_you_multiply_two_irrational_numbers_to_get_a_rational_number
- https://math.answers.com/algebra/How_do_you_draw_a_tangent_to_a_circle_from_a_point_on_its_circumference