math.answers.com/algebra/Describe_the_role_of_axiom_systems_in_algebra

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/algebra/Describe_the_role_of_axiom_systems_in_algebra

Describe the role of axiom systems in algebra? - Answers

An axiom in algebra is the stepping stone to solving equations. In order to solve and equation you know how to use the commutative, associative, distributive, transitive and equalilty axiom to solve the basic steps. For example: if you want an equation in the form y = mx + b, given 6x - 3y = 9 you must subtract 6x from both sides giving: -3y = 9-6x. Then you divide by -3 to get y = -3 + 2x. But the equation is not in the from y = mx + b. So we use the commutative property to switch the -3 + 2x and make it 2x - 3. Now it become y = 2x -3. and it is in the form y = mx + b. This manipulation could not be perfromed unless tahe student knew the commutative property. Once the axiom is know the algebraic manipulations fall into place.



Bing

Describe the role of axiom systems in algebra? - Answers

https://math.answers.com/algebra/Describe_the_role_of_axiom_systems_in_algebra

An axiom in algebra is the stepping stone to solving equations. In order to solve and equation you know how to use the commutative, associative, distributive, transitive and equalilty axiom to solve the basic steps. For example: if you want an equation in the form y = mx + b, given 6x - 3y = 9 you must subtract 6x from both sides giving: -3y = 9-6x. Then you divide by -3 to get y = -3 + 2x. But the equation is not in the from y = mx + b. So we use the commutative property to switch the -3 + 2x and make it 2x - 3. Now it become y = 2x -3. and it is in the form y = mx + b. This manipulation could not be perfromed unless tahe student knew the commutative property. Once the axiom is know the algebraic manipulations fall into place.



DuckDuckGo

https://math.answers.com/algebra/Describe_the_role_of_axiom_systems_in_algebra

Describe the role of axiom systems in algebra? - Answers

An axiom in algebra is the stepping stone to solving equations. In order to solve and equation you know how to use the commutative, associative, distributive, transitive and equalilty axiom to solve the basic steps. For example: if you want an equation in the form y = mx + b, given 6x - 3y = 9 you must subtract 6x from both sides giving: -3y = 9-6x. Then you divide by -3 to get y = -3 + 2x. But the equation is not in the from y = mx + b. So we use the commutative property to switch the -3 + 2x and make it 2x - 3. Now it become y = 2x -3. and it is in the form y = mx + b. This manipulation could not be perfromed unless tahe student knew the commutative property. Once the axiom is know the algebraic manipulations fall into place.

  • General Meta Tags

    22
    • title
      Describe the role of axiom systems in algebra? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      An axiom in algebra is the stepping stone to solving equations. In order to solve and equation you know how to use the commutative, associative, distributive, transitive and equalilty axiom to solve the basic steps. For example: if you want an equation in the form y = mx + b, given 6x - 3y = 9 you must subtract 6x from both sides giving: -3y = 9-6x. Then you divide by -3 to get y = -3 + 2x. But the equation is not in the from y = mx + b. So we use the commutative property to switch the -3 + 2x and make it 2x - 3. Now it become y = 2x -3. and it is in the form y = mx + b. This manipulation could not be perfromed unless tahe student knew the commutative property. Once the axiom is know the algebraic manipulations fall into place.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/algebra/Describe_the_role_of_axiom_systems_in_algebra
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58