math.answers.com/algebra/How_do_you_prove_a_Ring_to_be_commutative

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/algebra/How_do_you_prove_a_Ring_to_be_commutative

How do you prove a Ring to be commutative? - Answers

To prove a ring is commutative, one must show that for any two elements of the ring their product does not depend on the order in which you multiply them. For example, if p and q are any two elements of your ring then p*q must equal q*p in order for the ring to be commutative. Note that not every ring is commutative, in some rings p*q does not equal q*p for arbitrary q and p (for example, the ring of 2x2 matrices).



Bing

How do you prove a Ring to be commutative? - Answers

https://math.answers.com/algebra/How_do_you_prove_a_Ring_to_be_commutative

To prove a ring is commutative, one must show that for any two elements of the ring their product does not depend on the order in which you multiply them. For example, if p and q are any two elements of your ring then p*q must equal q*p in order for the ring to be commutative. Note that not every ring is commutative, in some rings p*q does not equal q*p for arbitrary q and p (for example, the ring of 2x2 matrices).



DuckDuckGo

https://math.answers.com/algebra/How_do_you_prove_a_Ring_to_be_commutative

How do you prove a Ring to be commutative? - Answers

To prove a ring is commutative, one must show that for any two elements of the ring their product does not depend on the order in which you multiply them. For example, if p and q are any two elements of your ring then p*q must equal q*p in order for the ring to be commutative. Note that not every ring is commutative, in some rings p*q does not equal q*p for arbitrary q and p (for example, the ring of 2x2 matrices).

  • General Meta Tags

    22
    • title
      How do you prove a Ring to be commutative? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      To prove a ring is commutative, one must show that for any two elements of the ring their product does not depend on the order in which you multiply them. For example, if p and q are any two elements of your ring then p*q must equal q*p in order for the ring to be commutative. Note that not every ring is commutative, in some rings p*q does not equal q*p for arbitrary q and p (for example, the ring of 2x2 matrices).
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/algebra/How_do_you_prove_a_Ring_to_be_commutative
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

57