math.answers.com/algebra/How_do_you_solve_a_permutation_in_math

Preview meta tags from the math.answers.com website.

Linked Hostnames

9

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/algebra/How_do_you_solve_a_permutation_in_math

How do you solve a permutation in math? - Answers

If there are n objects to fit r places (e.g. 9 people in 7 chairs, 4 tumblers in a lock) then the number of permutations is nCk, stated as n-choose-k. This number can be calculated by the formula n!/(n - k)!. If k is equal to n, then (n - k)! = 0! = 1, and the number of permutations is simply n!. If the direction of the permutation is irrelevant (e.g. ABCD is the same as DCBA) then divide by two to cancel out the double-counting.



Bing

How do you solve a permutation in math? - Answers

https://math.answers.com/algebra/How_do_you_solve_a_permutation_in_math

If there are n objects to fit r places (e.g. 9 people in 7 chairs, 4 tumblers in a lock) then the number of permutations is nCk, stated as n-choose-k. This number can be calculated by the formula n!/(n - k)!. If k is equal to n, then (n - k)! = 0! = 1, and the number of permutations is simply n!. If the direction of the permutation is irrelevant (e.g. ABCD is the same as DCBA) then divide by two to cancel out the double-counting.



DuckDuckGo

https://math.answers.com/algebra/How_do_you_solve_a_permutation_in_math

How do you solve a permutation in math? - Answers

If there are n objects to fit r places (e.g. 9 people in 7 chairs, 4 tumblers in a lock) then the number of permutations is nCk, stated as n-choose-k. This number can be calculated by the formula n!/(n - k)!. If k is equal to n, then (n - k)! = 0! = 1, and the number of permutations is simply n!. If the direction of the permutation is irrelevant (e.g. ABCD is the same as DCBA) then divide by two to cancel out the double-counting.

  • General Meta Tags

    22
    • title
      How do you solve a permutation in math? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      If there are n objects to fit r places (e.g. 9 people in 7 chairs, 4 tumblers in a lock) then the number of permutations is nCk, stated as n-choose-k. This number can be calculated by the formula n!/(n - k)!. If k is equal to n, then (n - k)! = 0! = 1, and the number of permutations is simply n!. If the direction of the permutation is irrelevant (e.g. ABCD is the same as DCBA) then divide by two to cancel out the double-counting.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/algebra/How_do_you_solve_a_permutation_in_math
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

57