math.answers.com/basic-math/Can_infinity_be_defined_as_rational_or_irrational_-_and_why

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/basic-math/Can_infinity_be_defined_as_rational_or_irrational_-_and_why

Can infinity be defined as rational or irrational - and why? - Answers

Infinity is not just really big number - and consequently the concepts of rational vs irrational cannot be applied to it. It is a marvelously useful concept with great utility in mathematics but don't confuse it for being the same as a number that we could write out and categorize just because we have a symbol for representing it. When you stick infinity into an equation you get things like "limits" rather than a fixed answer; for example - for the function f(x) = (x-1)/x, if x = ∞ you don't actually get a value for the function- rather you get a limit that it approaches as x goes off to infinity; in this case the limit as x approaches infinity is 1. For the function f(x) = (x-2)/x, the limit as x approaches infinity is ALSO 1, and for the function f(x) = x/(x-1) the limit as x approaches infinity is .... 1. Obviously for any finite number they will not have the same value, but conceptually they all converge to the same value as you go to infinity. Hopefully this illustrates why you cannot apply the concept of rational vs irrational to "infinity".



Bing

Can infinity be defined as rational or irrational - and why? - Answers

https://math.answers.com/basic-math/Can_infinity_be_defined_as_rational_or_irrational_-_and_why

Infinity is not just really big number - and consequently the concepts of rational vs irrational cannot be applied to it. It is a marvelously useful concept with great utility in mathematics but don't confuse it for being the same as a number that we could write out and categorize just because we have a symbol for representing it. When you stick infinity into an equation you get things like "limits" rather than a fixed answer; for example - for the function f(x) = (x-1)/x, if x = ∞ you don't actually get a value for the function- rather you get a limit that it approaches as x goes off to infinity; in this case the limit as x approaches infinity is 1. For the function f(x) = (x-2)/x, the limit as x approaches infinity is ALSO 1, and for the function f(x) = x/(x-1) the limit as x approaches infinity is .... 1. Obviously for any finite number they will not have the same value, but conceptually they all converge to the same value as you go to infinity. Hopefully this illustrates why you cannot apply the concept of rational vs irrational to "infinity".



DuckDuckGo

https://math.answers.com/basic-math/Can_infinity_be_defined_as_rational_or_irrational_-_and_why

Can infinity be defined as rational or irrational - and why? - Answers

Infinity is not just really big number - and consequently the concepts of rational vs irrational cannot be applied to it. It is a marvelously useful concept with great utility in mathematics but don't confuse it for being the same as a number that we could write out and categorize just because we have a symbol for representing it. When you stick infinity into an equation you get things like "limits" rather than a fixed answer; for example - for the function f(x) = (x-1)/x, if x = ∞ you don't actually get a value for the function- rather you get a limit that it approaches as x goes off to infinity; in this case the limit as x approaches infinity is 1. For the function f(x) = (x-2)/x, the limit as x approaches infinity is ALSO 1, and for the function f(x) = x/(x-1) the limit as x approaches infinity is .... 1. Obviously for any finite number they will not have the same value, but conceptually they all converge to the same value as you go to infinity. Hopefully this illustrates why you cannot apply the concept of rational vs irrational to "infinity".

  • General Meta Tags

    22
    • title
      Can infinity be defined as rational or irrational - and why? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      Infinity is not just really big number - and consequently the concepts of rational vs irrational cannot be applied to it. It is a marvelously useful concept with great utility in mathematics but don't confuse it for being the same as a number that we could write out and categorize just because we have a symbol for representing it. When you stick infinity into an equation you get things like "limits" rather than a fixed answer; for example - for the function f(x) = (x-1)/x, if x = ∞ you don't actually get a value for the function- rather you get a limit that it approaches as x goes off to infinity; in this case the limit as x approaches infinity is 1. For the function f(x) = (x-2)/x, the limit as x approaches infinity is ALSO 1, and for the function f(x) = x/(x-1) the limit as x approaches infinity is .... 1. Obviously for any finite number they will not have the same value, but conceptually they all converge to the same value as you go to infinity. Hopefully this illustrates why you cannot apply the concept of rational vs irrational to "infinity".
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/basic-math/Can_infinity_be_defined_as_rational_or_irrational_-_and_why
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

59