math.answers.com/basic-math/How_do_you_factor_polynomials_completely
Preview meta tags from the math.answers.com website.
Linked Hostnames
9- 29 links tomath.answers.com
- 22 links towww.answers.com
- 1 link toqa.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
Thumbnail

Search Engine Appearance
How do you factor polynomials completely? - Answers
Look for common factors. A common factor is a variable or number that can be factored out of each term in the equation. For example, in the polynomial 2x^3 + 6x + 10, all three terms are even and are therefore divisible by 2. Therefore, 2 is a factor of all 3 terms. In the polynomial 8x^4 + 2x^3 + x^2, x^2 is a factor of all three terms, since each of them contain at least an x^2 term.Step 2 Factor out the common factors. In the first example above, you can use the distributive property to factor out the 2:2x^3 + 6x + 10 = 2(x^3 + 3x + 5)In the second example, we can factor out the x^2:8x^4 + 2x^3 + x^2 = x^2(8x^2 + 2x + 1)Sometimes, you can factor out both a number and a variable. For example, in 3x^2 + 6x, you can factor out 3x:3x^2 + 6x = 3x(x + 2)Step 3 Look for a sum or difference of cubes. If, after factoring out your all the common factors, you only have a cubed variable and a cubed number left, you either have a difference of cubes or a sum of cubes. If one number is subtracted from another, it is a difference of cubes. If both numbers are added, it is a sum of cubes. For example, the polynomial equation x^4 + 8x can have an x factored out, resulting in x(x^3 + 8). x^3 is a cubed number, and 8 = 2^3. Therefore, you have a sum of cubes.Step 4 Plug in the formula for the sum or difference of cubes. The formula for a sum of cubes is:A^3 + B^3 = (A + B)(A^2 - AB + B^2)The formula for a difference of cubes is:A^3 - B^3 = (A - B)(A^2 + AB + B^2)So plugging in the problem from step 3, we get:x^4 + 8x =x(x^3 + 8)x(x^3 + 2^3)x(x + 2)(x^2 - 2x + 4)Step 5 Look for a difference of squares and apply the formula. A difference of squares is just like a difference of cubes, except that it involves a factorial with squared terms, such as x^2 - 4 = x^2 - 2^2. The formula is: A^2 - B^2 = (A + B)(A - B). So using that formula, we get:x^2 - 4 =x^2 - 2^2 = (x + 2)(x - 2)Step 6 Factor any remaining quadratic equations that can be factored. For example, in the expression x^2 + 7x +10, we need to find two numbers that multiply to 10 and add up to 7. Since 5 * 2 = 10, and 5 + 2 = 7, we get:x^2 + 7x + 10 =(x + 2)(x + 5)
Bing
How do you factor polynomials completely? - Answers
Look for common factors. A common factor is a variable or number that can be factored out of each term in the equation. For example, in the polynomial 2x^3 + 6x + 10, all three terms are even and are therefore divisible by 2. Therefore, 2 is a factor of all 3 terms. In the polynomial 8x^4 + 2x^3 + x^2, x^2 is a factor of all three terms, since each of them contain at least an x^2 term.Step 2 Factor out the common factors. In the first example above, you can use the distributive property to factor out the 2:2x^3 + 6x + 10 = 2(x^3 + 3x + 5)In the second example, we can factor out the x^2:8x^4 + 2x^3 + x^2 = x^2(8x^2 + 2x + 1)Sometimes, you can factor out both a number and a variable. For example, in 3x^2 + 6x, you can factor out 3x:3x^2 + 6x = 3x(x + 2)Step 3 Look for a sum or difference of cubes. If, after factoring out your all the common factors, you only have a cubed variable and a cubed number left, you either have a difference of cubes or a sum of cubes. If one number is subtracted from another, it is a difference of cubes. If both numbers are added, it is a sum of cubes. For example, the polynomial equation x^4 + 8x can have an x factored out, resulting in x(x^3 + 8). x^3 is a cubed number, and 8 = 2^3. Therefore, you have a sum of cubes.Step 4 Plug in the formula for the sum or difference of cubes. The formula for a sum of cubes is:A^3 + B^3 = (A + B)(A^2 - AB + B^2)The formula for a difference of cubes is:A^3 - B^3 = (A - B)(A^2 + AB + B^2)So plugging in the problem from step 3, we get:x^4 + 8x =x(x^3 + 8)x(x^3 + 2^3)x(x + 2)(x^2 - 2x + 4)Step 5 Look for a difference of squares and apply the formula. A difference of squares is just like a difference of cubes, except that it involves a factorial with squared terms, such as x^2 - 4 = x^2 - 2^2. The formula is: A^2 - B^2 = (A + B)(A - B). So using that formula, we get:x^2 - 4 =x^2 - 2^2 = (x + 2)(x - 2)Step 6 Factor any remaining quadratic equations that can be factored. For example, in the expression x^2 + 7x +10, we need to find two numbers that multiply to 10 and add up to 7. Since 5 * 2 = 10, and 5 + 2 = 7, we get:x^2 + 7x + 10 =(x + 2)(x + 5)
DuckDuckGo
How do you factor polynomials completely? - Answers
Look for common factors. A common factor is a variable or number that can be factored out of each term in the equation. For example, in the polynomial 2x^3 + 6x + 10, all three terms are even and are therefore divisible by 2. Therefore, 2 is a factor of all 3 terms. In the polynomial 8x^4 + 2x^3 + x^2, x^2 is a factor of all three terms, since each of them contain at least an x^2 term.Step 2 Factor out the common factors. In the first example above, you can use the distributive property to factor out the 2:2x^3 + 6x + 10 = 2(x^3 + 3x + 5)In the second example, we can factor out the x^2:8x^4 + 2x^3 + x^2 = x^2(8x^2 + 2x + 1)Sometimes, you can factor out both a number and a variable. For example, in 3x^2 + 6x, you can factor out 3x:3x^2 + 6x = 3x(x + 2)Step 3 Look for a sum or difference of cubes. If, after factoring out your all the common factors, you only have a cubed variable and a cubed number left, you either have a difference of cubes or a sum of cubes. If one number is subtracted from another, it is a difference of cubes. If both numbers are added, it is a sum of cubes. For example, the polynomial equation x^4 + 8x can have an x factored out, resulting in x(x^3 + 8). x^3 is a cubed number, and 8 = 2^3. Therefore, you have a sum of cubes.Step 4 Plug in the formula for the sum or difference of cubes. The formula for a sum of cubes is:A^3 + B^3 = (A + B)(A^2 - AB + B^2)The formula for a difference of cubes is:A^3 - B^3 = (A - B)(A^2 + AB + B^2)So plugging in the problem from step 3, we get:x^4 + 8x =x(x^3 + 8)x(x^3 + 2^3)x(x + 2)(x^2 - 2x + 4)Step 5 Look for a difference of squares and apply the formula. A difference of squares is just like a difference of cubes, except that it involves a factorial with squared terms, such as x^2 - 4 = x^2 - 2^2. The formula is: A^2 - B^2 = (A + B)(A - B). So using that formula, we get:x^2 - 4 =x^2 - 2^2 = (x + 2)(x - 2)Step 6 Factor any remaining quadratic equations that can be factored. For example, in the expression x^2 + 7x +10, we need to find two numbers that multiply to 10 and add up to 7. Since 5 * 2 = 10, and 5 + 2 = 7, we get:x^2 + 7x + 10 =(x + 2)(x + 5)
General Meta Tags
22- titleHow do you factor polynomials completely? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionLook for common factors. A common factor is a variable or number that can be factored out of each term in the equation. For example, in the polynomial 2x^3 + 6x + 10, all three terms are even and are therefore divisible by 2. Therefore, 2 is a factor of all 3 terms. In the polynomial 8x^4 + 2x^3 + x^2, x^2 is a factor of all three terms, since each of them contain at least an x^2 term.Step 2 Factor out the common factors. In the first example above, you can use the distributive property to factor out the 2:2x^3 + 6x + 10 = 2(x^3 + 3x + 5)In the second example, we can factor out the x^2:8x^4 + 2x^3 + x^2 = x^2(8x^2 + 2x + 1)Sometimes, you can factor out both a number and a variable. For example, in 3x^2 + 6x, you can factor out 3x:3x^2 + 6x = 3x(x + 2)Step 3 Look for a sum or difference of cubes. If, after factoring out your all the common factors, you only have a cubed variable and a cubed number left, you either have a difference of cubes or a sum of cubes. If one number is subtracted from another, it is a difference of cubes. If both numbers are added, it is a sum of cubes. For example, the polynomial equation x^4 + 8x can have an x factored out, resulting in x(x^3 + 8). x^3 is a cubed number, and 8 = 2^3. Therefore, you have a sum of cubes.Step 4 Plug in the formula for the sum or difference of cubes. The formula for a sum of cubes is:A^3 + B^3 = (A + B)(A^2 - AB + B^2)The formula for a difference of cubes is:A^3 - B^3 = (A - B)(A^2 + AB + B^2)So plugging in the problem from step 3, we get:x^4 + 8x =x(x^3 + 8)x(x^3 + 2^3)x(x + 2)(x^2 - 2x + 4)Step 5 Look for a difference of squares and apply the formula. A difference of squares is just like a difference of cubes, except that it involves a factorial with squared terms, such as x^2 - 4 = x^2 - 2^2. The formula is: A^2 - B^2 = (A + B)(A - B). So using that formula, we get:x^2 - 4 =x^2 - 2^2 = (x + 2)(x - 2)Step 6 Factor any remaining quadratic equations that can be factored. For example, in the expression x^2 + 7x +10, we need to find two numbers that multiply to 10 and add up to 7. Since 5 * 2 = 10, and 5 + 2 = 7, we get:x^2 + 7x + 10 =(x + 2)(x + 5)
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/basic-math/How_do_you_factor_polynomials_completely
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/basic-math/14.75_is_a_irrational_number
- https://math.answers.com/basic-math/How_do_you_factor_polynomials_completely
- https://math.answers.com/basic-math/How_do_you_write_0.902_in_word_form
- https://math.answers.com/basic-math/How_do_you_write_3050_as_a_percentage