math.answers.com/basic-math/How_do_you_find_cube_roots_of_imaginary_numbers

Preview meta tags from the math.answers.com website.

Linked Hostnames

9

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/basic-math/How_do_you_find_cube_roots_of_imaginary_numbers

How do you find cube roots of imaginary numbers? - Answers

For a pure imaginary number: {i = sqrt(-1)} times a real coefficient {r}, you have i*r. The cube_root(i*r) = cube_root(i)*cube_root(r), so find the cube root of r in the normal way, then we just need to find the cube root of i. For any cubic function (which has a polynomial, in which the highest term is x3) will always have 3 roots. There are 3 values, which when cubed will equal the imaginary number i:-i will do it: (-i)3 = (-i)2 * (-i) = -1 * (-i) = iThe other two are complex: sqrt(3)/2 + i/2 and -sqrt(3)/2 + i/2If you cube either of the two complex binomials by multiplying out, you will end up with 0 + i as the answer in both cases.Note: the possible roots for any cubic are: 3 real roots, or 1 real root and 2 complex root, or 1 pure imaginary root, and 2 complex roots.For your original question, if you want to stay in the pure imaginary domain, then you can use: Cube_root(i*r) = -i * cube_root(r) to find an answer.



Bing

How do you find cube roots of imaginary numbers? - Answers

https://math.answers.com/basic-math/How_do_you_find_cube_roots_of_imaginary_numbers

For a pure imaginary number: {i = sqrt(-1)} times a real coefficient {r}, you have i*r. The cube_root(i*r) = cube_root(i)*cube_root(r), so find the cube root of r in the normal way, then we just need to find the cube root of i. For any cubic function (which has a polynomial, in which the highest term is x3) will always have 3 roots. There are 3 values, which when cubed will equal the imaginary number i:-i will do it: (-i)3 = (-i)2 * (-i) = -1 * (-i) = iThe other two are complex: sqrt(3)/2 + i/2 and -sqrt(3)/2 + i/2If you cube either of the two complex binomials by multiplying out, you will end up with 0 + i as the answer in both cases.Note: the possible roots for any cubic are: 3 real roots, or 1 real root and 2 complex root, or 1 pure imaginary root, and 2 complex roots.For your original question, if you want to stay in the pure imaginary domain, then you can use: Cube_root(i*r) = -i * cube_root(r) to find an answer.



DuckDuckGo

https://math.answers.com/basic-math/How_do_you_find_cube_roots_of_imaginary_numbers

How do you find cube roots of imaginary numbers? - Answers

For a pure imaginary number: {i = sqrt(-1)} times a real coefficient {r}, you have i*r. The cube_root(i*r) = cube_root(i)*cube_root(r), so find the cube root of r in the normal way, then we just need to find the cube root of i. For any cubic function (which has a polynomial, in which the highest term is x3) will always have 3 roots. There are 3 values, which when cubed will equal the imaginary number i:-i will do it: (-i)3 = (-i)2 * (-i) = -1 * (-i) = iThe other two are complex: sqrt(3)/2 + i/2 and -sqrt(3)/2 + i/2If you cube either of the two complex binomials by multiplying out, you will end up with 0 + i as the answer in both cases.Note: the possible roots for any cubic are: 3 real roots, or 1 real root and 2 complex root, or 1 pure imaginary root, and 2 complex roots.For your original question, if you want to stay in the pure imaginary domain, then you can use: Cube_root(i*r) = -i * cube_root(r) to find an answer.

  • General Meta Tags

    22
    • title
      How do you find cube roots of imaginary numbers? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      For a pure imaginary number: {i = sqrt(-1)} times a real coefficient {r}, you have i*r. The cube_root(i*r) = cube_root(i)*cube_root(r), so find the cube root of r in the normal way, then we just need to find the cube root of i. For any cubic function (which has a polynomial, in which the highest term is x3) will always have 3 roots. There are 3 values, which when cubed will equal the imaginary number i:-i will do it: (-i)3 = (-i)2 * (-i) = -1 * (-i) = iThe other two are complex: sqrt(3)/2 + i/2 and -sqrt(3)/2 + i/2If you cube either of the two complex binomials by multiplying out, you will end up with 0 + i as the answer in both cases.Note: the possible roots for any cubic are: 3 real roots, or 1 real root and 2 complex root, or 1 pure imaginary root, and 2 complex roots.For your original question, if you want to stay in the pure imaginary domain, then you can use: Cube_root(i*r) = -i * cube_root(r) to find an answer.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/basic-math/How_do_you_find_cube_roots_of_imaginary_numbers
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58