math.answers.com/basic-math/Is_there_a_infinite_number_of_prime_numbers
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 32 links tomath.answers.com
- 21 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Is there a infinite number of prime numbers? - Answers
Yes. To prove this, we must first assume the answer to be no. If there are a finite number of primes, there must be a largest prime. We'll call this Prime number n. n! is n*(n-1)*(n-2)*...*3*2*1. n!, therefore, is divisible by all numbers smaller than or equal to n. It follows, then that n!+1 is divisible by none of them, except for 1. There are two possibilities: n!+1 is divisible by prime numbers between n and n!, or it is itself prime. Either way, we have proved that there are prime numbers greater than n, contradicting our initial assumption that primes are finite, proving that the number of primes is infinite.
Bing
Is there a infinite number of prime numbers? - Answers
Yes. To prove this, we must first assume the answer to be no. If there are a finite number of primes, there must be a largest prime. We'll call this Prime number n. n! is n*(n-1)*(n-2)*...*3*2*1. n!, therefore, is divisible by all numbers smaller than or equal to n. It follows, then that n!+1 is divisible by none of them, except for 1. There are two possibilities: n!+1 is divisible by prime numbers between n and n!, or it is itself prime. Either way, we have proved that there are prime numbers greater than n, contradicting our initial assumption that primes are finite, proving that the number of primes is infinite.
DuckDuckGo
Is there a infinite number of prime numbers? - Answers
Yes. To prove this, we must first assume the answer to be no. If there are a finite number of primes, there must be a largest prime. We'll call this Prime number n. n! is n*(n-1)*(n-2)*...*3*2*1. n!, therefore, is divisible by all numbers smaller than or equal to n. It follows, then that n!+1 is divisible by none of them, except for 1. There are two possibilities: n!+1 is divisible by prime numbers between n and n!, or it is itself prime. Either way, we have proved that there are prime numbers greater than n, contradicting our initial assumption that primes are finite, proving that the number of primes is infinite.
General Meta Tags
22- titleIs there a infinite number of prime numbers? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionYes. To prove this, we must first assume the answer to be no. If there are a finite number of primes, there must be a largest prime. We'll call this Prime number n. n! is n*(n-1)*(n-2)*...*3*2*1. n!, therefore, is divisible by all numbers smaller than or equal to n. It follows, then that n!+1 is divisible by none of them, except for 1. There are two possibilities: n!+1 is divisible by prime numbers between n and n!, or it is itself prime. Either way, we have proved that there are prime numbers greater than n, contradicting our initial assumption that primes are finite, proving that the number of primes is infinite.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/basic-math/Is_there_a_infinite_number_of_prime_numbers
- icon/favicon.svg
- icon/icons/16x16.png
Links
59- https://math.answers.com
- https://math.answers.com/basic-math/5643_to_the_nearest_hundred
- https://math.answers.com/basic-math/Is_10_a_prime_number
- https://math.answers.com/basic-math/Is_6200ft_greater_than_1mi_900ft
- https://math.answers.com/basic-math/Is_there_a_infinite_number_of_prime_numbers