math.answers.com/calculus/How_do_you_find_the_vertex_of_an_absolute_value_function

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/calculus/How_do_you_find_the_vertex_of_an_absolute_value_function

How do you find the vertex of an absolute value function? - Answers

There are three main types of vertices for an absolute value function. There are some vertices which are carried over from the function, and taking its absolute value makes no difference. For example, the vertex of the parabola y = 3*x^2 + 15 is not affected by taking absolute values. Then there are some vertices which are reflected in the x-axis because of the absolute value. For example, the vertex of the absolute value of y = 3*x^2 - 15, that is y = |3*x^2 - 15| will be the reflection of the vertex of the original. Finally there are points where the function is "bounced" off the x-axis. These points can be identified by solving for the roots of the original equation. -------------- The above answer considers the absolute value of a parabola. There is a simpler, more common function, y = lxl. In this form, the vertex is (0,0). A more general form is y = lx-hl +k, where y = lxl has been translated h units to the right and k units up. This function has its vertex at (h,k). Finally, for y = albx-hl + k, where the graph has been stretched vertically by a factor of a and compressed horizontally by a factor of b, the vertex will be at (h/b,ak). Of course, you can always find the vertex by graphing, especially since you might not remember the 2nd or 3rd parts above.



Bing

How do you find the vertex of an absolute value function? - Answers

https://math.answers.com/calculus/How_do_you_find_the_vertex_of_an_absolute_value_function

There are three main types of vertices for an absolute value function. There are some vertices which are carried over from the function, and taking its absolute value makes no difference. For example, the vertex of the parabola y = 3*x^2 + 15 is not affected by taking absolute values. Then there are some vertices which are reflected in the x-axis because of the absolute value. For example, the vertex of the absolute value of y = 3*x^2 - 15, that is y = |3*x^2 - 15| will be the reflection of the vertex of the original. Finally there are points where the function is "bounced" off the x-axis. These points can be identified by solving for the roots of the original equation. -------------- The above answer considers the absolute value of a parabola. There is a simpler, more common function, y = lxl. In this form, the vertex is (0,0). A more general form is y = lx-hl +k, where y = lxl has been translated h units to the right and k units up. This function has its vertex at (h,k). Finally, for y = albx-hl + k, where the graph has been stretched vertically by a factor of a and compressed horizontally by a factor of b, the vertex will be at (h/b,ak). Of course, you can always find the vertex by graphing, especially since you might not remember the 2nd or 3rd parts above.



DuckDuckGo

https://math.answers.com/calculus/How_do_you_find_the_vertex_of_an_absolute_value_function

How do you find the vertex of an absolute value function? - Answers

There are three main types of vertices for an absolute value function. There are some vertices which are carried over from the function, and taking its absolute value makes no difference. For example, the vertex of the parabola y = 3*x^2 + 15 is not affected by taking absolute values. Then there are some vertices which are reflected in the x-axis because of the absolute value. For example, the vertex of the absolute value of y = 3*x^2 - 15, that is y = |3*x^2 - 15| will be the reflection of the vertex of the original. Finally there are points where the function is "bounced" off the x-axis. These points can be identified by solving for the roots of the original equation. -------------- The above answer considers the absolute value of a parabola. There is a simpler, more common function, y = lxl. In this form, the vertex is (0,0). A more general form is y = lx-hl +k, where y = lxl has been translated h units to the right and k units up. This function has its vertex at (h,k). Finally, for y = albx-hl + k, where the graph has been stretched vertically by a factor of a and compressed horizontally by a factor of b, the vertex will be at (h/b,ak). Of course, you can always find the vertex by graphing, especially since you might not remember the 2nd or 3rd parts above.

  • General Meta Tags

    22
    • title
      How do you find the vertex of an absolute value function? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      There are three main types of vertices for an absolute value function. There are some vertices which are carried over from the function, and taking its absolute value makes no difference. For example, the vertex of the parabola y = 3*x^2 + 15 is not affected by taking absolute values. Then there are some vertices which are reflected in the x-axis because of the absolute value. For example, the vertex of the absolute value of y = 3*x^2 - 15, that is y = |3*x^2 - 15| will be the reflection of the vertex of the original. Finally there are points where the function is "bounced" off the x-axis. These points can be identified by solving for the roots of the original equation. -------------- The above answer considers the absolute value of a parabola. There is a simpler, more common function, y = lxl. In this form, the vertex is (0,0). A more general form is y = lx-hl +k, where y = lxl has been translated h units to the right and k units up. This function has its vertex at (h,k). Finally, for y = albx-hl + k, where the graph has been stretched vertically by a factor of a and compressed horizontally by a factor of b, the vertex will be at (h/b,ak). Of course, you can always find the vertex by graphing, especially since you might not remember the 2nd or 3rd parts above.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/calculus/How_do_you_find_the_vertex_of_an_absolute_value_function
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58