math.answers.com/math-and-arithmetic/Angle_where_the_vertex_is_outside_the_circle
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 18 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Angle where the vertex is outside the circle? - Answers
When the vertex of an angle is located outside a circle, the measure of the angle is determined by the difference of the measures of the intercepted arcs. Specifically, if the angle intercepts arcs A and B, the angle's measure can be calculated using the formula: (\text{Angle} = \frac{1}{2} (m\overarc{A} - m\overarc{B})), where (m\overarc{A}) and (m\overarc{B}) are the measures of the intercepted arcs. This relationship holds true for both secant and tangent lines that intersect the circle.
Bing
Angle where the vertex is outside the circle? - Answers
When the vertex of an angle is located outside a circle, the measure of the angle is determined by the difference of the measures of the intercepted arcs. Specifically, if the angle intercepts arcs A and B, the angle's measure can be calculated using the formula: (\text{Angle} = \frac{1}{2} (m\overarc{A} - m\overarc{B})), where (m\overarc{A}) and (m\overarc{B}) are the measures of the intercepted arcs. This relationship holds true for both secant and tangent lines that intersect the circle.
DuckDuckGo
Angle where the vertex is outside the circle? - Answers
When the vertex of an angle is located outside a circle, the measure of the angle is determined by the difference of the measures of the intercepted arcs. Specifically, if the angle intercepts arcs A and B, the angle's measure can be calculated using the formula: (\text{Angle} = \frac{1}{2} (m\overarc{A} - m\overarc{B})), where (m\overarc{A}) and (m\overarc{B}) are the measures of the intercepted arcs. This relationship holds true for both secant and tangent lines that intersect the circle.
General Meta Tags
22- titleAngle where the vertex is outside the circle? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionWhen the vertex of an angle is located outside a circle, the measure of the angle is determined by the difference of the measures of the intercepted arcs. Specifically, if the angle intercepts arcs A and B, the angle's measure can be calculated using the formula: (\text{Angle} = \frac{1}{2} (m\overarc{A} - m\overarc{B})), where (m\overarc{A}) and (m\overarc{B}) are the measures of the intercepted arcs. This relationship holds true for both secant and tangent lines that intersect the circle.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/Angle_where_the_vertex_is_outside_the_circle
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/2_5_14_122_what_is_the_missing_number
- https://math.answers.com/math-and-arithmetic/Angle_where_the_vertex_is_outside_the_circle
- https://math.answers.com/math-and-arithmetic/Difference_between_perimeter_and_area
- https://math.answers.com/math-and-arithmetic/HOW_DO_I_WRITE_0.018_IN_SIMPLEST_FORM_SHOWING_WORK