math.answers.com/math-and-arithmetic/Are_the_diagonals_of_a_square_are_never_perpendicular
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 33 links tomath.answers.com
- 19 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Are the diagonals of a square are never perpendicular? - Answers
The diagonals of a square are always perpendicular. Proof: Without loss of generality, assume the square has side length 1 and one vertex is at the origin. The square ABCD is given by: A = (0,0) , B = (1,0) , C = (1,1) , D = (0,1) The diagonals are d1=AC and d2=BD. Finding equations for each of them yields d1 = x d2 = 1-x (you can double check this) So, the relative slopes are 1 and -1. Since their product is -1, they are perpendicular.
Bing
Are the diagonals of a square are never perpendicular? - Answers
The diagonals of a square are always perpendicular. Proof: Without loss of generality, assume the square has side length 1 and one vertex is at the origin. The square ABCD is given by: A = (0,0) , B = (1,0) , C = (1,1) , D = (0,1) The diagonals are d1=AC and d2=BD. Finding equations for each of them yields d1 = x d2 = 1-x (you can double check this) So, the relative slopes are 1 and -1. Since their product is -1, they are perpendicular.
DuckDuckGo
Are the diagonals of a square are never perpendicular? - Answers
The diagonals of a square are always perpendicular. Proof: Without loss of generality, assume the square has side length 1 and one vertex is at the origin. The square ABCD is given by: A = (0,0) , B = (1,0) , C = (1,1) , D = (0,1) The diagonals are d1=AC and d2=BD. Finding equations for each of them yields d1 = x d2 = 1-x (you can double check this) So, the relative slopes are 1 and -1. Since their product is -1, they are perpendicular.
General Meta Tags
22- titleAre the diagonals of a square are never perpendicular? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThe diagonals of a square are always perpendicular. Proof: Without loss of generality, assume the square has side length 1 and one vertex is at the origin. The square ABCD is given by: A = (0,0) , B = (1,0) , C = (1,1) , D = (0,1) The diagonals are d1=AC and d2=BD. Finding equations for each of them yields d1 = x d2 = 1-x (you can double check this) So, the relative slopes are 1 and -1. Since their product is -1, they are perpendicular.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/Are_the_diagonals_of_a_square_are_never_perpendicular
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/488.22_round_to_the_nearest_hundredths_place
- https://math.answers.com/math-and-arithmetic/Are_the_diagonals_of_a_square_are_never_perpendicular
- https://math.answers.com/math-and-arithmetic/How_long_to_walk_7.6_miles
- https://math.answers.com/math-and-arithmetic/How_many_100_dollar_bills_are_in_one_thousand_seven_hundred