math.answers.com/math-and-arithmetic/Can_covariance_be_negative

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/Can_covariance_be_negative

Can covariance be negative? - Answers

I'd be inclined to say no, Im looking for the answer myself. But if you have Cov(A-B,A+B)=Cov(A,A)-Cov(B,B)-Cov(B,A)+Cov(A,B), then the last two will cancel but if Var(B)>Var(A) then we would get a negative covariance. [Cov(A,A)=Var(A)] So it looks possible because as far as I know there is no squaring of the coefficeients when you bring them out of the covariance so a negative answer is entirely possible.



Bing

Can covariance be negative? - Answers

https://math.answers.com/math-and-arithmetic/Can_covariance_be_negative

I'd be inclined to say no, Im looking for the answer myself. But if you have Cov(A-B,A+B)=Cov(A,A)-Cov(B,B)-Cov(B,A)+Cov(A,B), then the last two will cancel but if Var(B)>Var(A) then we would get a negative covariance. [Cov(A,A)=Var(A)] So it looks possible because as far as I know there is no squaring of the coefficeients when you bring them out of the covariance so a negative answer is entirely possible.



DuckDuckGo

https://math.answers.com/math-and-arithmetic/Can_covariance_be_negative

Can covariance be negative? - Answers

I'd be inclined to say no, Im looking for the answer myself. But if you have Cov(A-B,A+B)=Cov(A,A)-Cov(B,B)-Cov(B,A)+Cov(A,B), then the last two will cancel but if Var(B)>Var(A) then we would get a negative covariance. [Cov(A,A)=Var(A)] So it looks possible because as far as I know there is no squaring of the coefficeients when you bring them out of the covariance so a negative answer is entirely possible.

  • General Meta Tags

    22
    • title
      Can covariance be negative? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      I'd be inclined to say no, Im looking for the answer myself. But if you have Cov(A-B,A+B)=Cov(A,A)-Cov(B,B)-Cov(B,A)+Cov(A,B), then the last two will cancel but if Var(B)>Var(A) then we would get a negative covariance. [Cov(A,A)=Var(A)] So it looks possible because as far as I know there is no squaring of the coefficeients when you bring them out of the covariance so a negative answer is entirely possible.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/Can_covariance_be_negative
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58