math.answers.com/math-and-arithmetic/Can_every_repeating_fraction_be_represented_as_a_decimal

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/Can_every_repeating_fraction_be_represented_as_a_decimal

Can every repeating fraction be represented as a decimal? - Answers

Yes, because a fraction a/b where a and b are integer, and b is different than 0, is a rational number which are whole numbers or decimal numbers, where the decimal part is finite or repeating blocks. Conversely, decimals that do not repeat or terminate cannot be represented as a fraction. For example, in a right isosceles triangle with side a and hypotenuse (square root of 2)a, we can't represent as a fraction [(square root of2)a]/a (hypotenuse/side), because will have an irrational number (square root of 2). Here is one fun thing to know about repeating decimals. If you look at the repeating decimals formed by taking 1/n, where n is a Prime number that is not 2 or 5, you will see that the length of the (smallest choice of) the part that repeats [i.e., 3, not 333, for 0.3333...] is: 1.always less than or equal to n-1, 2. equal to n-1 only for some of these prime numbers. 3. always a divisor of n-1.



Bing

Can every repeating fraction be represented as a decimal? - Answers

https://math.answers.com/math-and-arithmetic/Can_every_repeating_fraction_be_represented_as_a_decimal

Yes, because a fraction a/b where a and b are integer, and b is different than 0, is a rational number which are whole numbers or decimal numbers, where the decimal part is finite or repeating blocks. Conversely, decimals that do not repeat or terminate cannot be represented as a fraction. For example, in a right isosceles triangle with side a and hypotenuse (square root of 2)a, we can't represent as a fraction [(square root of2)a]/a (hypotenuse/side), because will have an irrational number (square root of 2). Here is one fun thing to know about repeating decimals. If you look at the repeating decimals formed by taking 1/n, where n is a Prime number that is not 2 or 5, you will see that the length of the (smallest choice of) the part that repeats [i.e., 3, not 333, for 0.3333...] is: 1.always less than or equal to n-1, 2. equal to n-1 only for some of these prime numbers. 3. always a divisor of n-1.



DuckDuckGo

https://math.answers.com/math-and-arithmetic/Can_every_repeating_fraction_be_represented_as_a_decimal

Can every repeating fraction be represented as a decimal? - Answers

Yes, because a fraction a/b where a and b are integer, and b is different than 0, is a rational number which are whole numbers or decimal numbers, where the decimal part is finite or repeating blocks. Conversely, decimals that do not repeat or terminate cannot be represented as a fraction. For example, in a right isosceles triangle with side a and hypotenuse (square root of 2)a, we can't represent as a fraction [(square root of2)a]/a (hypotenuse/side), because will have an irrational number (square root of 2). Here is one fun thing to know about repeating decimals. If you look at the repeating decimals formed by taking 1/n, where n is a Prime number that is not 2 or 5, you will see that the length of the (smallest choice of) the part that repeats [i.e., 3, not 333, for 0.3333...] is: 1.always less than or equal to n-1, 2. equal to n-1 only for some of these prime numbers. 3. always a divisor of n-1.

  • General Meta Tags

    22
    • title
      Can every repeating fraction be represented as a decimal? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      Yes, because a fraction a/b where a and b are integer, and b is different than 0, is a rational number which are whole numbers or decimal numbers, where the decimal part is finite or repeating blocks. Conversely, decimals that do not repeat or terminate cannot be represented as a fraction. For example, in a right isosceles triangle with side a and hypotenuse (square root of 2)a, we can't represent as a fraction [(square root of2)a]/a (hypotenuse/side), because will have an irrational number (square root of 2). Here is one fun thing to know about repeating decimals. If you look at the repeating decimals formed by taking 1/n, where n is a Prime number that is not 2 or 5, you will see that the length of the (smallest choice of) the part that repeats [i.e., 3, not 333, for 0.3333...] is: 1.always less than or equal to n-1, 2. equal to n-1 only for some of these prime numbers. 3. always a divisor of n-1.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/Can_every_repeating_fraction_be_represented_as_a_decimal
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

59