math.answers.com/math-and-arithmetic/Can_you_always_find_another_fraction_in_between_ant_two_fractions_why
Preview meta tags from the math.answers.com website.
Linked Hostnames
9- 28 links tomath.answers.com
- 23 links towww.answers.com
- 1 link toqa.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
Thumbnail

Search Engine Appearance
Can you always find another fraction in between ant two fractions why? - Answers
Yes. The simple answer is that rational fractions are infinitely dense. A longer proof follows:Suppose you have two fractions a/b and c/d where a, b, c and d are integers and b, d are positive integers.Without loss of generality, assume a/b < c/d.The inequality implies that ad < bc so that bc-ad>0 . . . . . . . . . . . . . . . . . . . (I)Consider (ad + bc)/(2bd)Then (ad+bc)/2bd - a/b = (ad+bc)/2bd - 2ad/2bd = (bc-ad)/2bdBy definition, b and d are positive so bd is positive and by result (I), the numerator is positive.That is to say, (ad+bc)/2bd - a/b > 0 or (ad+bc)/2bd > a/b.Similarly, by considering c/d - (ad+bc)/2bd is can be shown that c/d > (ad+bc)/2bd.Combining these results,a/b < (ad+bc)/2bd < c/d.
Bing
Can you always find another fraction in between ant two fractions why? - Answers
Yes. The simple answer is that rational fractions are infinitely dense. A longer proof follows:Suppose you have two fractions a/b and c/d where a, b, c and d are integers and b, d are positive integers.Without loss of generality, assume a/b < c/d.The inequality implies that ad < bc so that bc-ad>0 . . . . . . . . . . . . . . . . . . . (I)Consider (ad + bc)/(2bd)Then (ad+bc)/2bd - a/b = (ad+bc)/2bd - 2ad/2bd = (bc-ad)/2bdBy definition, b and d are positive so bd is positive and by result (I), the numerator is positive.That is to say, (ad+bc)/2bd - a/b > 0 or (ad+bc)/2bd > a/b.Similarly, by considering c/d - (ad+bc)/2bd is can be shown that c/d > (ad+bc)/2bd.Combining these results,a/b < (ad+bc)/2bd < c/d.
DuckDuckGo
Can you always find another fraction in between ant two fractions why? - Answers
Yes. The simple answer is that rational fractions are infinitely dense. A longer proof follows:Suppose you have two fractions a/b and c/d where a, b, c and d are integers and b, d are positive integers.Without loss of generality, assume a/b < c/d.The inequality implies that ad < bc so that bc-ad>0 . . . . . . . . . . . . . . . . . . . (I)Consider (ad + bc)/(2bd)Then (ad+bc)/2bd - a/b = (ad+bc)/2bd - 2ad/2bd = (bc-ad)/2bdBy definition, b and d are positive so bd is positive and by result (I), the numerator is positive.That is to say, (ad+bc)/2bd - a/b > 0 or (ad+bc)/2bd > a/b.Similarly, by considering c/d - (ad+bc)/2bd is can be shown that c/d > (ad+bc)/2bd.Combining these results,a/b < (ad+bc)/2bd < c/d.
General Meta Tags
22- titleCan you always find another fraction in between ant two fractions why? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionYes. The simple answer is that rational fractions are infinitely dense. A longer proof follows:Suppose you have two fractions a/b and c/d where a, b, c and d are integers and b, d are positive integers.Without loss of generality, assume a/b < c/d.The inequality implies that ad < bc so that bc-ad>0 . . . . . . . . . . . . . . . . . . . (I)Consider (ad + bc)/(2bd)Then (ad+bc)/2bd - a/b = (ad+bc)/2bd - 2ad/2bd = (bc-ad)/2bdBy definition, b and d are positive so bd is positive and by result (I), the numerator is positive.That is to say, (ad+bc)/2bd - a/b > 0 or (ad+bc)/2bd > a/b.Similarly, by considering c/d - (ad+bc)/2bd is can be shown that c/d > (ad+bc)/2bd.Combining these results,a/b < (ad+bc)/2bd < c/d.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/Can_you_always_find_another_fraction_in_between_ant_two_fractions_why
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Are_all_irrational_numbers_are_surds
- https://math.answers.com/math-and-arithmetic/Can_you_always_find_another_fraction_in_between_ant_two_fractions_why
- https://math.answers.com/math-and-arithmetic/Do_you_add_and_subtract_like_and_unlike_fractions_in_the_same_way
- https://math.answers.com/math-and-arithmetic/How_many_inches_are_there_in_10.5_miles