math.answers.com/math-and-arithmetic/Did_Lobachevsky_negation_created_spherical_geometry
Preview meta tags from the math.answers.com website.
Linked Hostnames
9- 34 links tomath.answers.com
- 17 links towww.answers.com
- 1 link toqa.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
Thumbnail

Search Engine Appearance
Did Lobachevsky negation created spherical geometry? - Answers
Lobachevsky's work did not create spherical geometry; rather, he is known for developing hyperbolic geometry, which deviates from Euclidean principles. Spherical geometry, on the other hand, is based on the properties of figures on the surface of a sphere and includes concepts such as great circles and the sum of angles in a triangle exceeding 180 degrees. Both geometries are non-Euclidean, but they arise from different fundamental assumptions about space. Lobachevsky's contributions helped to expand the understanding of non-Euclidean geometries, including both hyperbolic and spherical forms.
Bing
Did Lobachevsky negation created spherical geometry? - Answers
Lobachevsky's work did not create spherical geometry; rather, he is known for developing hyperbolic geometry, which deviates from Euclidean principles. Spherical geometry, on the other hand, is based on the properties of figures on the surface of a sphere and includes concepts such as great circles and the sum of angles in a triangle exceeding 180 degrees. Both geometries are non-Euclidean, but they arise from different fundamental assumptions about space. Lobachevsky's contributions helped to expand the understanding of non-Euclidean geometries, including both hyperbolic and spherical forms.
DuckDuckGo
Did Lobachevsky negation created spherical geometry? - Answers
Lobachevsky's work did not create spherical geometry; rather, he is known for developing hyperbolic geometry, which deviates from Euclidean principles. Spherical geometry, on the other hand, is based on the properties of figures on the surface of a sphere and includes concepts such as great circles and the sum of angles in a triangle exceeding 180 degrees. Both geometries are non-Euclidean, but they arise from different fundamental assumptions about space. Lobachevsky's contributions helped to expand the understanding of non-Euclidean geometries, including both hyperbolic and spherical forms.
General Meta Tags
22- titleDid Lobachevsky negation created spherical geometry? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionLobachevsky's work did not create spherical geometry; rather, he is known for developing hyperbolic geometry, which deviates from Euclidean principles. Spherical geometry, on the other hand, is based on the properties of figures on the surface of a sphere and includes concepts such as great circles and the sum of angles in a triangle exceeding 180 degrees. Both geometries are non-Euclidean, but they arise from different fundamental assumptions about space. Lobachevsky's contributions helped to expand the understanding of non-Euclidean geometries, including both hyperbolic and spherical forms.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/Did_Lobachevsky_negation_created_spherical_geometry
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Did_Lobachevsky_negation_created_spherical_geometry
- https://math.answers.com/math-and-arithmetic/Does_a_diamond_have_four_congruent_sides_and_two_parallel_sides
- https://math.answers.com/math-and-arithmetic/How_do_you_write_fifty-five_thousand_in_number_form
- https://math.answers.com/math-and-arithmetic/How_many_feet_are_in_36_miles