math.answers.com/math-and-arithmetic/Did_Riemann's_negation_create_the_hyperbolic_geometry

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/Did_Riemann's_negation_create_the_hyperbolic_geometry

Did Riemann's negation create the hyperbolic geometry? - Answers

Riemann did not negate Euclidean geometry; rather, he expanded the understanding of geometry by introducing the concept of non-Euclidean geometry, which includes both hyperbolic and elliptic geometries. Hyperbolic geometry, characterized by a consistent set of postulates that differ from Euclid's, was developed earlier by mathematicians like Lobachevsky and Bolyai. Riemann's work laid the groundwork for understanding these geometrical systems within a broader context, but the creation of hyperbolic geometry itself was not solely due to his negation.



Bing

Did Riemann's negation create the hyperbolic geometry? - Answers

https://math.answers.com/math-and-arithmetic/Did_Riemann's_negation_create_the_hyperbolic_geometry

Riemann did not negate Euclidean geometry; rather, he expanded the understanding of geometry by introducing the concept of non-Euclidean geometry, which includes both hyperbolic and elliptic geometries. Hyperbolic geometry, characterized by a consistent set of postulates that differ from Euclid's, was developed earlier by mathematicians like Lobachevsky and Bolyai. Riemann's work laid the groundwork for understanding these geometrical systems within a broader context, but the creation of hyperbolic geometry itself was not solely due to his negation.



DuckDuckGo

https://math.answers.com/math-and-arithmetic/Did_Riemann's_negation_create_the_hyperbolic_geometry

Did Riemann's negation create the hyperbolic geometry? - Answers

Riemann did not negate Euclidean geometry; rather, he expanded the understanding of geometry by introducing the concept of non-Euclidean geometry, which includes both hyperbolic and elliptic geometries. Hyperbolic geometry, characterized by a consistent set of postulates that differ from Euclid's, was developed earlier by mathematicians like Lobachevsky and Bolyai. Riemann's work laid the groundwork for understanding these geometrical systems within a broader context, but the creation of hyperbolic geometry itself was not solely due to his negation.

  • General Meta Tags

    22
    • title
      Did Riemann's negation create the hyperbolic geometry? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      Riemann did not negate Euclidean geometry; rather, he expanded the understanding of geometry by introducing the concept of non-Euclidean geometry, which includes both hyperbolic and elliptic geometries. Hyperbolic geometry, characterized by a consistent set of postulates that differ from Euclid's, was developed earlier by mathematicians like Lobachevsky and Bolyai. Riemann's work laid the groundwork for understanding these geometrical systems within a broader context, but the creation of hyperbolic geometry itself was not solely due to his negation.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/Did_Riemann%27s_negation_create_the_hyperbolic_geometry
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

59