math.answers.com/math-and-arithmetic/Different_between_crisp_set_and_fuzzy_set

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/Different_between_crisp_set_and_fuzzy_set

Different between crisp set and fuzzy set? - Answers

In short, for a crisp set (subset) elements of the set definitely do belong to the set, while in a fuzzy set (subset) elements of the set have a degree of membership in the set. To make things clearer:Suppose we have a reference set X={x_1, ...} and a subset Y={y_1, ...} of X. If Y represents a crisp subset of X, then for all x_n belonging to X, x_n either belongs or Y or does not belong to Y. We can write this by assigning a function C which takes each member of X to 1 iff it belongs to Y, and 0 iff it does not belong to Y. E. G. Suppose we have the set {1, 2, 3, 4, 5}. For the crisp subset {1, 2, 4} we could write this in terms of a function C which takes 1 to 1, 2 to 1, 3 to 0, 4 to 1, and 5 to 0, or we can write {(1, 1), (2, 1), (3, 0), (4, 1), (5, 1)}.For a fuzzy subset F of a reference set X the elements of F may belong to F to a degree in between 0 and 1 (as well as may belong to F to degree 0 or 1). We can write this by assigning a function M which takes each member of X to a number in the interval of real numbers from 0 to 1, [0, 1] to represent its degree of membership. Here "larger" numbers represent a greater degree of membership in the fuzzy subset F. For example, for the reference set {1, 2, 3, 4, 5} we could have a function M which takes 1 to .4, 2 to 1, 3 to .6, 4 to .2, and 5 to 0, or {(1, .4), (2, 1), (3, .6), (4, .2), (5, 0)}, with 3 having a greater degree of membership in F than 4 does, since .6>.2.



Bing

Different between crisp set and fuzzy set? - Answers

https://math.answers.com/math-and-arithmetic/Different_between_crisp_set_and_fuzzy_set

In short, for a crisp set (subset) elements of the set definitely do belong to the set, while in a fuzzy set (subset) elements of the set have a degree of membership in the set. To make things clearer:Suppose we have a reference set X={x_1, ...} and a subset Y={y_1, ...} of X. If Y represents a crisp subset of X, then for all x_n belonging to X, x_n either belongs or Y or does not belong to Y. We can write this by assigning a function C which takes each member of X to 1 iff it belongs to Y, and 0 iff it does not belong to Y. E. G. Suppose we have the set {1, 2, 3, 4, 5}. For the crisp subset {1, 2, 4} we could write this in terms of a function C which takes 1 to 1, 2 to 1, 3 to 0, 4 to 1, and 5 to 0, or we can write {(1, 1), (2, 1), (3, 0), (4, 1), (5, 1)}.For a fuzzy subset F of a reference set X the elements of F may belong to F to a degree in between 0 and 1 (as well as may belong to F to degree 0 or 1). We can write this by assigning a function M which takes each member of X to a number in the interval of real numbers from 0 to 1, [0, 1] to represent its degree of membership. Here "larger" numbers represent a greater degree of membership in the fuzzy subset F. For example, for the reference set {1, 2, 3, 4, 5} we could have a function M which takes 1 to .4, 2 to 1, 3 to .6, 4 to .2, and 5 to 0, or {(1, .4), (2, 1), (3, .6), (4, .2), (5, 0)}, with 3 having a greater degree of membership in F than 4 does, since .6>.2.



DuckDuckGo

https://math.answers.com/math-and-arithmetic/Different_between_crisp_set_and_fuzzy_set

Different between crisp set and fuzzy set? - Answers

In short, for a crisp set (subset) elements of the set definitely do belong to the set, while in a fuzzy set (subset) elements of the set have a degree of membership in the set. To make things clearer:Suppose we have a reference set X={x_1, ...} and a subset Y={y_1, ...} of X. If Y represents a crisp subset of X, then for all x_n belonging to X, x_n either belongs or Y or does not belong to Y. We can write this by assigning a function C which takes each member of X to 1 iff it belongs to Y, and 0 iff it does not belong to Y. E. G. Suppose we have the set {1, 2, 3, 4, 5}. For the crisp subset {1, 2, 4} we could write this in terms of a function C which takes 1 to 1, 2 to 1, 3 to 0, 4 to 1, and 5 to 0, or we can write {(1, 1), (2, 1), (3, 0), (4, 1), (5, 1)}.For a fuzzy subset F of a reference set X the elements of F may belong to F to a degree in between 0 and 1 (as well as may belong to F to degree 0 or 1). We can write this by assigning a function M which takes each member of X to a number in the interval of real numbers from 0 to 1, [0, 1] to represent its degree of membership. Here "larger" numbers represent a greater degree of membership in the fuzzy subset F. For example, for the reference set {1, 2, 3, 4, 5} we could have a function M which takes 1 to .4, 2 to 1, 3 to .6, 4 to .2, and 5 to 0, or {(1, .4), (2, 1), (3, .6), (4, .2), (5, 0)}, with 3 having a greater degree of membership in F than 4 does, since .6>.2.

  • General Meta Tags

    22
    • title
      Different between crisp set and fuzzy set? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      In short, for a crisp set (subset) elements of the set definitely do belong to the set, while in a fuzzy set (subset) elements of the set have a degree of membership in the set. To make things clearer:Suppose we have a reference set X={x_1, ...} and a subset Y={y_1, ...} of X. If Y represents a crisp subset of X, then for all x_n belonging to X, x_n either belongs or Y or does not belong to Y. We can write this by assigning a function C which takes each member of X to 1 iff it belongs to Y, and 0 iff it does not belong to Y. E. G. Suppose we have the set {1, 2, 3, 4, 5}. For the crisp subset {1, 2, 4} we could write this in terms of a function C which takes 1 to 1, 2 to 1, 3 to 0, 4 to 1, and 5 to 0, or we can write {(1, 1), (2, 1), (3, 0), (4, 1), (5, 1)}.For a fuzzy subset F of a reference set X the elements of F may belong to F to a degree in between 0 and 1 (as well as may belong to F to degree 0 or 1). We can write this by assigning a function M which takes each member of X to a number in the interval of real numbers from 0 to 1, [0, 1] to represent its degree of membership. Here "larger" numbers represent a greater degree of membership in the fuzzy subset F. For example, for the reference set {1, 2, 3, 4, 5} we could have a function M which takes 1 to .4, 2 to 1, 3 to .6, 4 to .2, and 5 to 0, or {(1, .4), (2, 1), (3, .6), (4, .2), (5, 0)}, with 3 having a greater degree of membership in F than 4 does, since .6>.2.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/Different_between_crisp_set_and_fuzzy_set
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58