math.answers.com/math-and-arithmetic/Does_f_have_an_inverse
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 33 links tomath.answers.com
- 19 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Does f have an inverse? - Answers
It very much depends on f. If f is one-to-one and onto (injective and surjective) then yes, else no. One-to-one means that for each element in the domain there is a different image in the range. This is not true for g(x) = x2 for example, where -3 and +3 are both mapped to +9. So g(x) does not have an inverse UNLESS you restrict the domain of g to non-negative reals. Then -3 is no longer in the domain. Onto means that every element in the range of the function has a corresponding element in the domain which is mapped onto it. Again, a suitable changes to the domain and range can transform a function without an inverse into an invertible one.
Bing
Does f have an inverse? - Answers
It very much depends on f. If f is one-to-one and onto (injective and surjective) then yes, else no. One-to-one means that for each element in the domain there is a different image in the range. This is not true for g(x) = x2 for example, where -3 and +3 are both mapped to +9. So g(x) does not have an inverse UNLESS you restrict the domain of g to non-negative reals. Then -3 is no longer in the domain. Onto means that every element in the range of the function has a corresponding element in the domain which is mapped onto it. Again, a suitable changes to the domain and range can transform a function without an inverse into an invertible one.
DuckDuckGo
Does f have an inverse? - Answers
It very much depends on f. If f is one-to-one and onto (injective and surjective) then yes, else no. One-to-one means that for each element in the domain there is a different image in the range. This is not true for g(x) = x2 for example, where -3 and +3 are both mapped to +9. So g(x) does not have an inverse UNLESS you restrict the domain of g to non-negative reals. Then -3 is no longer in the domain. Onto means that every element in the range of the function has a corresponding element in the domain which is mapped onto it. Again, a suitable changes to the domain and range can transform a function without an inverse into an invertible one.
General Meta Tags
22- titleDoes f have an inverse? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionIt very much depends on f. If f is one-to-one and onto (injective and surjective) then yes, else no. One-to-one means that for each element in the domain there is a different image in the range. This is not true for g(x) = x2 for example, where -3 and +3 are both mapped to +9. So g(x) does not have an inverse UNLESS you restrict the domain of g to non-negative reals. Then -3 is no longer in the domain. Onto means that every element in the range of the function has a corresponding element in the domain which is mapped onto it. Again, a suitable changes to the domain and range can transform a function without an inverse into an invertible one.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/Does_f_have_an_inverse
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/1_lb_equal_to_how_many_gram
- https://math.answers.com/math-and-arithmetic/Does_f_have_an_inverse
- https://math.answers.com/math-and-arithmetic/How_can_you_write_39_as_a_product_of_its_prime_factors
- https://math.answers.com/math-and-arithmetic/How_do_you_read_11000000.00