math.answers.com/math-and-arithmetic/Find_the_area_of_an_equilateral_triangle_with_altitude_h_cm
Preview meta tags from the math.answers.com website.
Linked Hostnames
9- 33 links tomath.answers.com
- 18 links towww.answers.com
- 1 link toqa.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
Thumbnail

Search Engine Appearance
Find the area of an equilateral triangle with altitude h cm? - Answers
The altitude of an equilateral triangle bisects the base. So, if the sides of the triangle were l cm, the altitude forms a right angled triangle with sides h, l/2 and hypotenuse l cm. Then, by Pythagoras, h2 = 3l2 / 4 so that h = l*sqrt(3)/2 and then area = l*h/2 = l*[l*sqrt(3)/2]/2 =l2*sqrt(3)/4
Bing
Find the area of an equilateral triangle with altitude h cm? - Answers
The altitude of an equilateral triangle bisects the base. So, if the sides of the triangle were l cm, the altitude forms a right angled triangle with sides h, l/2 and hypotenuse l cm. Then, by Pythagoras, h2 = 3l2 / 4 so that h = l*sqrt(3)/2 and then area = l*h/2 = l*[l*sqrt(3)/2]/2 =l2*sqrt(3)/4
DuckDuckGo
Find the area of an equilateral triangle with altitude h cm? - Answers
The altitude of an equilateral triangle bisects the base. So, if the sides of the triangle were l cm, the altitude forms a right angled triangle with sides h, l/2 and hypotenuse l cm. Then, by Pythagoras, h2 = 3l2 / 4 so that h = l*sqrt(3)/2 and then area = l*h/2 = l*[l*sqrt(3)/2]/2 =l2*sqrt(3)/4
General Meta Tags
22- titleFind the area of an equilateral triangle with altitude h cm? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThe altitude of an equilateral triangle bisects the base. So, if the sides of the triangle were l cm, the altitude forms a right angled triangle with sides h, l/2 and hypotenuse l cm. Then, by Pythagoras, h2 = 3l2 / 4 so that h = l*sqrt(3)/2 and then area = l*h/2 = l*[l*sqrt(3)/2]/2 =l2*sqrt(3)/4
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/Find_the_area_of_an_equilateral_triangle_with_altitude_h_cm
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Are_triangles_scalene
- https://math.answers.com/math-and-arithmetic/Can_you_find_a_pattern_in_the_numbers_4_6_9_13_18
- https://math.answers.com/math-and-arithmetic/Find_the_area_of_an_equilateral_triangle_with_altitude_h_cm
- https://math.answers.com/math-and-arithmetic/How_do_you_draw_an_array_to_find_the_product_of_4_multiplied_by_5