math.answers.com/math-and-arithmetic/Find_the_greatest_value_of_x3y4_if_2x_plus_3y7_and_x0y0

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/Find_the_greatest_value_of_x3y4_if_2x_plus_3y7_and_x0y0

Find the greatest value of x3y4 if 2x plus 3y7 and x0y0? - Answers

To maximize ( x^3y^4 ) given the constraint ( 2x + 3y = 7 ) and ( x \geq 0, y \geq 0 ), we can use the method of Lagrange multipliers or substitute ( y ) in terms of ( x ). From the equation, express ( y ) as ( y = \frac{7 - 2x}{3} ). Substituting this into ( x^3y^4 ) will yield a function of ( x ) that can be maximized within the feasible region defined by the constraints. Solving this will give the maximum value of ( x^3y^4 ).



Bing

Find the greatest value of x3y4 if 2x plus 3y7 and x0y0? - Answers

https://math.answers.com/math-and-arithmetic/Find_the_greatest_value_of_x3y4_if_2x_plus_3y7_and_x0y0

To maximize ( x^3y^4 ) given the constraint ( 2x + 3y = 7 ) and ( x \geq 0, y \geq 0 ), we can use the method of Lagrange multipliers or substitute ( y ) in terms of ( x ). From the equation, express ( y ) as ( y = \frac{7 - 2x}{3} ). Substituting this into ( x^3y^4 ) will yield a function of ( x ) that can be maximized within the feasible region defined by the constraints. Solving this will give the maximum value of ( x^3y^4 ).



DuckDuckGo

https://math.answers.com/math-and-arithmetic/Find_the_greatest_value_of_x3y4_if_2x_plus_3y7_and_x0y0

Find the greatest value of x3y4 if 2x plus 3y7 and x0y0? - Answers

To maximize ( x^3y^4 ) given the constraint ( 2x + 3y = 7 ) and ( x \geq 0, y \geq 0 ), we can use the method of Lagrange multipliers or substitute ( y ) in terms of ( x ). From the equation, express ( y ) as ( y = \frac{7 - 2x}{3} ). Substituting this into ( x^3y^4 ) will yield a function of ( x ) that can be maximized within the feasible region defined by the constraints. Solving this will give the maximum value of ( x^3y^4 ).

  • General Meta Tags

    22
    • title
      Find the greatest value of x3y4 if 2x plus 3y7 and x0y0? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      To maximize ( x^3y^4 ) given the constraint ( 2x + 3y = 7 ) and ( x \geq 0, y \geq 0 ), we can use the method of Lagrange multipliers or substitute ( y ) in terms of ( x ). From the equation, express ( y ) as ( y = \frac{7 - 2x}{3} ). Substituting this into ( x^3y^4 ) will yield a function of ( x ) that can be maximized within the feasible region defined by the constraints. Solving this will give the maximum value of ( x^3y^4 ).
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/Find_the_greatest_value_of_x3y4_if_2x_plus_3y7_and_x0y0
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

59