math.answers.com/math-and-arithmetic/Find_the_greatest_value_of_x3y4_if_2x_plus_3y7_and_x0y0
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 33 links tomath.answers.com
- 20 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
Find the greatest value of x3y4 if 2x plus 3y7 and x0y0? - Answers
To maximize ( x^3y^4 ) given the constraint ( 2x + 3y = 7 ) and ( x \geq 0, y \geq 0 ), we can use the method of Lagrange multipliers or substitute ( y ) in terms of ( x ). From the equation, express ( y ) as ( y = \frac{7 - 2x}{3} ). Substituting this into ( x^3y^4 ) will yield a function of ( x ) that can be maximized within the feasible region defined by the constraints. Solving this will give the maximum value of ( x^3y^4 ).
Bing
Find the greatest value of x3y4 if 2x plus 3y7 and x0y0? - Answers
To maximize ( x^3y^4 ) given the constraint ( 2x + 3y = 7 ) and ( x \geq 0, y \geq 0 ), we can use the method of Lagrange multipliers or substitute ( y ) in terms of ( x ). From the equation, express ( y ) as ( y = \frac{7 - 2x}{3} ). Substituting this into ( x^3y^4 ) will yield a function of ( x ) that can be maximized within the feasible region defined by the constraints. Solving this will give the maximum value of ( x^3y^4 ).
DuckDuckGo
Find the greatest value of x3y4 if 2x plus 3y7 and x0y0? - Answers
To maximize ( x^3y^4 ) given the constraint ( 2x + 3y = 7 ) and ( x \geq 0, y \geq 0 ), we can use the method of Lagrange multipliers or substitute ( y ) in terms of ( x ). From the equation, express ( y ) as ( y = \frac{7 - 2x}{3} ). Substituting this into ( x^3y^4 ) will yield a function of ( x ) that can be maximized within the feasible region defined by the constraints. Solving this will give the maximum value of ( x^3y^4 ).
General Meta Tags
22- titleFind the greatest value of x3y4 if 2x plus 3y7 and x0y0? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionTo maximize ( x^3y^4 ) given the constraint ( 2x + 3y = 7 ) and ( x \geq 0, y \geq 0 ), we can use the method of Lagrange multipliers or substitute ( y ) in terms of ( x ). From the equation, express ( y ) as ( y = \frac{7 - 2x}{3} ). Substituting this into ( x^3y^4 ) will yield a function of ( x ) that can be maximized within the feasible region defined by the constraints. Solving this will give the maximum value of ( x^3y^4 ).
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/Find_the_greatest_value_of_x3y4_if_2x_plus_3y7_and_x0y0
- icon/favicon.svg
- icon/icons/16x16.png
Links
59- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/198_is_33precent_of_what_number
- https://math.answers.com/math-and-arithmetic/Can_more_than_1_appeal_be_made_at_the_same_time
- https://math.answers.com/math-and-arithmetic/Dc_equals_10_what_is_the_value_of_bc
- https://math.answers.com/math-and-arithmetic/Find_the_greatest_value_of_x3y4_if_2x_plus_3y7_and_x0y0