math.answers.com/math-and-arithmetic/How_can_a_rational_equation_have_more_than_one_solution
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 33 links tomath.answers.com
- 19 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How can a rational equation have more than one solution? - Answers
A rational equation can be multiplied by the least common multiple of its denominators to make it into a polynomial equation. The degree of this polynomial is the highest power (of the variable) that appears in it. It can be proven that a polynomial of degree n must have n roots in the complex domain. However, there may be fewer roots in the real domain. This is because if the coefficients are real then there may be pairs of complex roots [conjugates] which will not count as real roots. Also, there may be identical roots of multiple order. For example, x4 - 1 = 0 has 4 complex roots. These are 1, -1, i and -i where i is the imaginary root of -1. There are only 2 real roots -1 and +1. x4 = 0 has 4 multiple roots, each of which is 0. Thus x = 0 is a root of multiplicity 4.
Bing
How can a rational equation have more than one solution? - Answers
A rational equation can be multiplied by the least common multiple of its denominators to make it into a polynomial equation. The degree of this polynomial is the highest power (of the variable) that appears in it. It can be proven that a polynomial of degree n must have n roots in the complex domain. However, there may be fewer roots in the real domain. This is because if the coefficients are real then there may be pairs of complex roots [conjugates] which will not count as real roots. Also, there may be identical roots of multiple order. For example, x4 - 1 = 0 has 4 complex roots. These are 1, -1, i and -i where i is the imaginary root of -1. There are only 2 real roots -1 and +1. x4 = 0 has 4 multiple roots, each of which is 0. Thus x = 0 is a root of multiplicity 4.
DuckDuckGo
How can a rational equation have more than one solution? - Answers
A rational equation can be multiplied by the least common multiple of its denominators to make it into a polynomial equation. The degree of this polynomial is the highest power (of the variable) that appears in it. It can be proven that a polynomial of degree n must have n roots in the complex domain. However, there may be fewer roots in the real domain. This is because if the coefficients are real then there may be pairs of complex roots [conjugates] which will not count as real roots. Also, there may be identical roots of multiple order. For example, x4 - 1 = 0 has 4 complex roots. These are 1, -1, i and -i where i is the imaginary root of -1. There are only 2 real roots -1 and +1. x4 = 0 has 4 multiple roots, each of which is 0. Thus x = 0 is a root of multiplicity 4.
General Meta Tags
22- titleHow can a rational equation have more than one solution? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionA rational equation can be multiplied by the least common multiple of its denominators to make it into a polynomial equation. The degree of this polynomial is the highest power (of the variable) that appears in it. It can be proven that a polynomial of degree n must have n roots in the complex domain. However, there may be fewer roots in the real domain. This is because if the coefficients are real then there may be pairs of complex roots [conjugates] which will not count as real roots. Also, there may be identical roots of multiple order. For example, x4 - 1 = 0 has 4 complex roots. These are 1, -1, i and -i where i is the imaginary root of -1. There are only 2 real roots -1 and +1. x4 = 0 has 4 multiple roots, each of which is 0. Thus x = 0 is a root of multiplicity 4.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_can_a_rational_equation_have_more_than_one_solution
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/How_can_a_rational_equation_have_more_than_one_solution
- https://math.answers.com/math-and-arithmetic/How_can_you_add_decimals_without_a_place-value_chart_to_make_sure_you_adding_the_same_place_value
- https://math.answers.com/math-and-arithmetic/How_do_you_factor_9x2_17x_-_30
- https://math.answers.com/math-and-arithmetic/How_much_is_15_percent_off_of_180