math.answers.com/math-and-arithmetic/How_can_a_rational_equation_have_more_than_one_solution

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/How_can_a_rational_equation_have_more_than_one_solution

How can a rational equation have more than one solution? - Answers

A rational equation can be multiplied by the least common multiple of its denominators to make it into a polynomial equation. The degree of this polynomial is the highest power (of the variable) that appears in it. It can be proven that a polynomial of degree n must have n roots in the complex domain. However, there may be fewer roots in the real domain. This is because if the coefficients are real then there may be pairs of complex roots [conjugates] which will not count as real roots. Also, there may be identical roots of multiple order. For example, x4 - 1 = 0 has 4 complex roots. These are 1, -1, i and -i where i is the imaginary root of -1. There are only 2 real roots -1 and +1. x4 = 0 has 4 multiple roots, each of which is 0. Thus x = 0 is a root of multiplicity 4.



Bing

How can a rational equation have more than one solution? - Answers

https://math.answers.com/math-and-arithmetic/How_can_a_rational_equation_have_more_than_one_solution

A rational equation can be multiplied by the least common multiple of its denominators to make it into a polynomial equation. The degree of this polynomial is the highest power (of the variable) that appears in it. It can be proven that a polynomial of degree n must have n roots in the complex domain. However, there may be fewer roots in the real domain. This is because if the coefficients are real then there may be pairs of complex roots [conjugates] which will not count as real roots. Also, there may be identical roots of multiple order. For example, x4 - 1 = 0 has 4 complex roots. These are 1, -1, i and -i where i is the imaginary root of -1. There are only 2 real roots -1 and +1. x4 = 0 has 4 multiple roots, each of which is 0. Thus x = 0 is a root of multiplicity 4.



DuckDuckGo

https://math.answers.com/math-and-arithmetic/How_can_a_rational_equation_have_more_than_one_solution

How can a rational equation have more than one solution? - Answers

A rational equation can be multiplied by the least common multiple of its denominators to make it into a polynomial equation. The degree of this polynomial is the highest power (of the variable) that appears in it. It can be proven that a polynomial of degree n must have n roots in the complex domain. However, there may be fewer roots in the real domain. This is because if the coefficients are real then there may be pairs of complex roots [conjugates] which will not count as real roots. Also, there may be identical roots of multiple order. For example, x4 - 1 = 0 has 4 complex roots. These are 1, -1, i and -i where i is the imaginary root of -1. There are only 2 real roots -1 and +1. x4 = 0 has 4 multiple roots, each of which is 0. Thus x = 0 is a root of multiplicity 4.

  • General Meta Tags

    22
    • title
      How can a rational equation have more than one solution? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      A rational equation can be multiplied by the least common multiple of its denominators to make it into a polynomial equation. The degree of this polynomial is the highest power (of the variable) that appears in it. It can be proven that a polynomial of degree n must have n roots in the complex domain. However, there may be fewer roots in the real domain. This is because if the coefficients are real then there may be pairs of complex roots [conjugates] which will not count as real roots. Also, there may be identical roots of multiple order. For example, x4 - 1 = 0 has 4 complex roots. These are 1, -1, i and -i where i is the imaginary root of -1. There are only 2 real roots -1 and +1. x4 = 0 has 4 multiple roots, each of which is 0. Thus x = 0 is a root of multiplicity 4.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/How_can_a_rational_equation_have_more_than_one_solution
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58