math.answers.com/math-and-arithmetic/How_do_one_determine_when_a_data_is_normally_distributed

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/How_do_one_determine_when_a_data_is_normally_distributed

How do one determine when a data is normally distributed? - Answers

Use the Kolmogorov Smirnoff goodness-of-fit test. A normal distribution is a bell shaped curve, which is nearly symmetrica. It looks like an upside down bell. It can be squished low (platykurtic) or pulled high and skinny (leptokurtic) but it is still bell shaped and symmetrical. A mathematical test is to use the pearson's skew. If the pearson's skew is between 0 and 0.49, then the data is a non-problematic or normally distributed. If it is greater than 0.50, then it is not a normal distribution so one cannot treat it as such. The pearson's skew equation is skew p= (3 (mean - median)) / (SD(x) SD(y))



Bing

How do one determine when a data is normally distributed? - Answers

https://math.answers.com/math-and-arithmetic/How_do_one_determine_when_a_data_is_normally_distributed

Use the Kolmogorov Smirnoff goodness-of-fit test. A normal distribution is a bell shaped curve, which is nearly symmetrica. It looks like an upside down bell. It can be squished low (platykurtic) or pulled high and skinny (leptokurtic) but it is still bell shaped and symmetrical. A mathematical test is to use the pearson's skew. If the pearson's skew is between 0 and 0.49, then the data is a non-problematic or normally distributed. If it is greater than 0.50, then it is not a normal distribution so one cannot treat it as such. The pearson's skew equation is skew p= (3 (mean - median)) / (SD(x) SD(y))



DuckDuckGo

https://math.answers.com/math-and-arithmetic/How_do_one_determine_when_a_data_is_normally_distributed

How do one determine when a data is normally distributed? - Answers

Use the Kolmogorov Smirnoff goodness-of-fit test. A normal distribution is a bell shaped curve, which is nearly symmetrica. It looks like an upside down bell. It can be squished low (platykurtic) or pulled high and skinny (leptokurtic) but it is still bell shaped and symmetrical. A mathematical test is to use the pearson's skew. If the pearson's skew is between 0 and 0.49, then the data is a non-problematic or normally distributed. If it is greater than 0.50, then it is not a normal distribution so one cannot treat it as such. The pearson's skew equation is skew p= (3 (mean - median)) / (SD(x) SD(y))

  • General Meta Tags

    22
    • title
      How do one determine when a data is normally distributed? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      Use the Kolmogorov Smirnoff goodness-of-fit test. A normal distribution is a bell shaped curve, which is nearly symmetrica. It looks like an upside down bell. It can be squished low (platykurtic) or pulled high and skinny (leptokurtic) but it is still bell shaped and symmetrical. A mathematical test is to use the pearson's skew. If the pearson's skew is between 0 and 0.49, then the data is a non-problematic or normally distributed. If it is greater than 0.50, then it is not a normal distribution so one cannot treat it as such. The pearson's skew equation is skew p= (3 (mean - median)) / (SD(x) SD(y))
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/How_do_one_determine_when_a_data_is_normally_distributed
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58