math.answers.com/math-and-arithmetic/How_do_you_calculate_the_interior_angles_of_a_polygon
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 33 links tomath.answers.com
- 19 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you calculate the interior angles of a polygon? - Answers
The formula for calculating the TOTAL of the interior angles of an n-sided polygon is: Angle Sum = 180 (n-2) degrees So for a regular polygon, each of the identical interior angles will be 180(n-2)/n e.g. triangle 180 (3-2) / 3 = 60 square 180 (4-2) / 4 = 90 pentagon 180 (5-2) / 5 = 108 heptagon 180 (7-2) / 7 = 128.57 (128 4/7)
Bing
How do you calculate the interior angles of a polygon? - Answers
The formula for calculating the TOTAL of the interior angles of an n-sided polygon is: Angle Sum = 180 (n-2) degrees So for a regular polygon, each of the identical interior angles will be 180(n-2)/n e.g. triangle 180 (3-2) / 3 = 60 square 180 (4-2) / 4 = 90 pentagon 180 (5-2) / 5 = 108 heptagon 180 (7-2) / 7 = 128.57 (128 4/7)
DuckDuckGo
How do you calculate the interior angles of a polygon? - Answers
The formula for calculating the TOTAL of the interior angles of an n-sided polygon is: Angle Sum = 180 (n-2) degrees So for a regular polygon, each of the identical interior angles will be 180(n-2)/n e.g. triangle 180 (3-2) / 3 = 60 square 180 (4-2) / 4 = 90 pentagon 180 (5-2) / 5 = 108 heptagon 180 (7-2) / 7 = 128.57 (128 4/7)
General Meta Tags
22- titleHow do you calculate the interior angles of a polygon? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThe formula for calculating the TOTAL of the interior angles of an n-sided polygon is: Angle Sum = 180 (n-2) degrees So for a regular polygon, each of the identical interior angles will be 180(n-2)/n e.g. triangle 180 (3-2) / 3 = 60 square 180 (4-2) / 4 = 90 pentagon 180 (5-2) / 5 = 108 heptagon 180 (7-2) / 7 = 128.57 (128 4/7)
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_calculate_the_interior_angles_of_a_polygon
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Based_on_the_data_from_three_annual_checkups_Jon%27s_mean_height_is_62_in_at_the_first_two_checkups_Jon%27s_height_was_58_in_and_61_in_what_was_his_height_at_the_third_checkup
- https://math.answers.com/math-and-arithmetic/Compare-05-116-23-19-and-1333-in-desending-order
- https://math.answers.com/math-and-arithmetic/Does_1_times_90_equal_90
- https://math.answers.com/math-and-arithmetic/How_do_you_calculate_the_interior_angles_of_a_polygon