math.answers.com/math-and-arithmetic/How_do_you_convert_.88888..._into_a_fraction
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 33 links tomath.answers.com
- 19 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you convert .88888... into a fraction? - Answers
To convert the repeating decimal (0.88888...) into a fraction, let (x = 0.88888...). By multiplying both sides of the equation by 10, we get (10x = 8.88888...). Subtracting the original equation from this gives (10x - x = 8.88888... - 0.88888...), which simplifies to (9x = 8). Therefore, (x = \frac{8}{9}), so (0.88888... = \frac{8}{9}).
Bing
How do you convert .88888... into a fraction? - Answers
To convert the repeating decimal (0.88888...) into a fraction, let (x = 0.88888...). By multiplying both sides of the equation by 10, we get (10x = 8.88888...). Subtracting the original equation from this gives (10x - x = 8.88888... - 0.88888...), which simplifies to (9x = 8). Therefore, (x = \frac{8}{9}), so (0.88888... = \frac{8}{9}).
DuckDuckGo
How do you convert .88888... into a fraction? - Answers
To convert the repeating decimal (0.88888...) into a fraction, let (x = 0.88888...). By multiplying both sides of the equation by 10, we get (10x = 8.88888...). Subtracting the original equation from this gives (10x - x = 8.88888... - 0.88888...), which simplifies to (9x = 8). Therefore, (x = \frac{8}{9}), so (0.88888... = \frac{8}{9}).
General Meta Tags
22- titleHow do you convert .88888... into a fraction? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionTo convert the repeating decimal (0.88888...) into a fraction, let (x = 0.88888...). By multiplying both sides of the equation by 10, we get (10x = 8.88888...). Subtracting the original equation from this gives (10x - x = 8.88888... - 0.88888...), which simplifies to (9x = 8). Therefore, (x = \frac{8}{9}), so (0.88888... = \frac{8}{9}).
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_convert_.88888..._into_a_fraction
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/How_do_you_convert_.88888..._into_a_fraction
- https://math.answers.com/math-and-arithmetic/How_many_cm_equal_5%274%27
- https://math.answers.com/math-and-arithmetic/How_many_times_larger_is_China%27s_population_than_the_US
- https://math.answers.com/math-and-arithmetic/How_would_you_write_1752.82_on_a_check