math.answers.com/math-and-arithmetic/How_do_you_convert_.88888..._into_a_fraction

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/How_do_you_convert_.88888..._into_a_fraction

How do you convert .88888... into a fraction? - Answers

To convert the repeating decimal (0.88888...) into a fraction, let (x = 0.88888...). By multiplying both sides of the equation by 10, we get (10x = 8.88888...). Subtracting the original equation from this gives (10x - x = 8.88888... - 0.88888...), which simplifies to (9x = 8). Therefore, (x = \frac{8}{9}), so (0.88888... = \frac{8}{9}).



Bing

How do you convert .88888... into a fraction? - Answers

https://math.answers.com/math-and-arithmetic/How_do_you_convert_.88888..._into_a_fraction

To convert the repeating decimal (0.88888...) into a fraction, let (x = 0.88888...). By multiplying both sides of the equation by 10, we get (10x = 8.88888...). Subtracting the original equation from this gives (10x - x = 8.88888... - 0.88888...), which simplifies to (9x = 8). Therefore, (x = \frac{8}{9}), so (0.88888... = \frac{8}{9}).



DuckDuckGo

https://math.answers.com/math-and-arithmetic/How_do_you_convert_.88888..._into_a_fraction

How do you convert .88888... into a fraction? - Answers

To convert the repeating decimal (0.88888...) into a fraction, let (x = 0.88888...). By multiplying both sides of the equation by 10, we get (10x = 8.88888...). Subtracting the original equation from this gives (10x - x = 8.88888... - 0.88888...), which simplifies to (9x = 8). Therefore, (x = \frac{8}{9}), so (0.88888... = \frac{8}{9}).

  • General Meta Tags

    22
    • title
      How do you convert .88888... into a fraction? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      To convert the repeating decimal (0.88888...) into a fraction, let (x = 0.88888...). By multiplying both sides of the equation by 10, we get (10x = 8.88888...). Subtracting the original equation from this gives (10x - x = 8.88888... - 0.88888...), which simplifies to (9x = 8). Therefore, (x = \frac{8}{9}), so (0.88888... = \frac{8}{9}).
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/How_do_you_convert_.88888..._into_a_fraction
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58