math.answers.com/math-and-arithmetic/How_do_you_convert_131_5_to_base_10
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 35 links tomath.answers.com
- 17 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you convert 131 5 to base 10? - Answers
To convert the number (131_5) from base 5 to base 10, you multiply each digit by (5) raised to the power of its position, starting from the right (position 0). So, (1 \times 5^2 + 3 \times 5^1 + 1 \times 5^0) equals (1 \times 25 + 3 \times 5 + 1 \times 1), which simplifies to (25 + 15 + 1 = 41). Therefore, (131_5) in base 10 is (41).
Bing
How do you convert 131 5 to base 10? - Answers
To convert the number (131_5) from base 5 to base 10, you multiply each digit by (5) raised to the power of its position, starting from the right (position 0). So, (1 \times 5^2 + 3 \times 5^1 + 1 \times 5^0) equals (1 \times 25 + 3 \times 5 + 1 \times 1), which simplifies to (25 + 15 + 1 = 41). Therefore, (131_5) in base 10 is (41).
DuckDuckGo
How do you convert 131 5 to base 10? - Answers
To convert the number (131_5) from base 5 to base 10, you multiply each digit by (5) raised to the power of its position, starting from the right (position 0). So, (1 \times 5^2 + 3 \times 5^1 + 1 \times 5^0) equals (1 \times 25 + 3 \times 5 + 1 \times 1), which simplifies to (25 + 15 + 1 = 41). Therefore, (131_5) in base 10 is (41).
General Meta Tags
22- titleHow do you convert 131 5 to base 10? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionTo convert the number (131_5) from base 5 to base 10, you multiply each digit by (5) raised to the power of its position, starting from the right (position 0). So, (1 \times 5^2 + 3 \times 5^1 + 1 \times 5^0) equals (1 \times 25 + 3 \times 5 + 1 \times 1), which simplifies to (25 + 15 + 1 = 41). Therefore, (131_5) in base 10 is (41).
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_convert_131_5_to_base_10
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/65cm_equals_how_many_mm
- https://math.answers.com/math-and-arithmetic/How_do_you_convert_131_5_to_base_10
- https://math.answers.com/math-and-arithmetic/How_much_longer_to_the_nearest_minute_would_it_take_to_travel_300_miles_at_60_mph_versus_70_mph
- https://math.answers.com/math-and-arithmetic/How_old_is_athenea