math.answers.com/math-and-arithmetic/How_do_you_find_the_complex_cube_roots_of_1_plus_0i
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 32 links tomath.answers.com
- 20 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you find the complex cube roots of 1 plus 0i? - Answers
z = 1 + 0i So |rz| = 1 and az = 0 radians. which allows you to write z = rz*cos(az) + i*sin(az) Then, if y = z1/3 then |y| = |z1/3| = |11/3| = 1 and ay is the angle in [0, 360) such that 3*ay = 0 mod(2*pi) that is, ay = 0, 2pi/3 and 4pi/3 And therefore, Root 1 = cos(0) + i*sin(0) Root 2 = cos(2pi/3) + i*sin(2pi/3) and Root 3 = cos(4pi/3) + i*sin(4pi/3).
Bing
How do you find the complex cube roots of 1 plus 0i? - Answers
z = 1 + 0i So |rz| = 1 and az = 0 radians. which allows you to write z = rz*cos(az) + i*sin(az) Then, if y = z1/3 then |y| = |z1/3| = |11/3| = 1 and ay is the angle in [0, 360) such that 3*ay = 0 mod(2*pi) that is, ay = 0, 2pi/3 and 4pi/3 And therefore, Root 1 = cos(0) + i*sin(0) Root 2 = cos(2pi/3) + i*sin(2pi/3) and Root 3 = cos(4pi/3) + i*sin(4pi/3).
DuckDuckGo
How do you find the complex cube roots of 1 plus 0i? - Answers
z = 1 + 0i So |rz| = 1 and az = 0 radians. which allows you to write z = rz*cos(az) + i*sin(az) Then, if y = z1/3 then |y| = |z1/3| = |11/3| = 1 and ay is the angle in [0, 360) such that 3*ay = 0 mod(2*pi) that is, ay = 0, 2pi/3 and 4pi/3 And therefore, Root 1 = cos(0) + i*sin(0) Root 2 = cos(2pi/3) + i*sin(2pi/3) and Root 3 = cos(4pi/3) + i*sin(4pi/3).
General Meta Tags
22- titleHow do you find the complex cube roots of 1 plus 0i? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionz = 1 + 0i So |rz| = 1 and az = 0 radians. which allows you to write z = rz*cos(az) + i*sin(az) Then, if y = z1/3 then |y| = |z1/3| = |11/3| = 1 and ay is the angle in [0, 360) such that 3*ay = 0 mod(2*pi) that is, ay = 0, 2pi/3 and 4pi/3 And therefore, Root 1 = cos(0) + i*sin(0) Root 2 = cos(2pi/3) + i*sin(2pi/3) and Root 3 = cos(4pi/3) + i*sin(4pi/3).
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_find_the_complex_cube_roots_of_1_plus_0i
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Another_name_for_the_Cartesian_coordinate_system_is_the_xy-plane
- https://math.answers.com/math-and-arithmetic/How_do_you_find_the_complex_cube_roots_of_1_plus_0i
- https://math.answers.com/math-and-arithmetic/How_do_you_measure_the_volume_of_an_irregular_object
- https://math.answers.com/math-and-arithmetic/How_do_you_square_a_number_smaller_than_1