math.answers.com/math-and-arithmetic/How_do_you_integrate_x_secx
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 30 links tomath.answers.com
- 22 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you integrate x secx? - Answers
To integrate ( x \sec x ), you can use integration by parts. Let ( u = x ) and ( dv = \sec x , dx ). Then, ( du = dx ) and ( v = \ln |\sec x + \tan x| ). Applying the integration by parts formula, you get: [ \int x \sec x , dx = x \ln |\sec x + \tan x| - \int \ln |\sec x + \tan x| , dx + C ] where ( C ) is the constant of integration. The second integral may require further techniques to evaluate.
Bing
How do you integrate x secx? - Answers
To integrate ( x \sec x ), you can use integration by parts. Let ( u = x ) and ( dv = \sec x , dx ). Then, ( du = dx ) and ( v = \ln |\sec x + \tan x| ). Applying the integration by parts formula, you get: [ \int x \sec x , dx = x \ln |\sec x + \tan x| - \int \ln |\sec x + \tan x| , dx + C ] where ( C ) is the constant of integration. The second integral may require further techniques to evaluate.
DuckDuckGo
How do you integrate x secx? - Answers
To integrate ( x \sec x ), you can use integration by parts. Let ( u = x ) and ( dv = \sec x , dx ). Then, ( du = dx ) and ( v = \ln |\sec x + \tan x| ). Applying the integration by parts formula, you get: [ \int x \sec x , dx = x \ln |\sec x + \tan x| - \int \ln |\sec x + \tan x| , dx + C ] where ( C ) is the constant of integration. The second integral may require further techniques to evaluate.
General Meta Tags
22- titleHow do you integrate x secx? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionTo integrate ( x \sec x ), you can use integration by parts. Let ( u = x ) and ( dv = \sec x , dx ). Then, ( du = dx ) and ( v = \ln |\sec x + \tan x| ). Applying the integration by parts formula, you get: [ \int x \sec x , dx = x \ln |\sec x + \tan x| - \int \ln |\sec x + \tan x| , dx + C ] where ( C ) is the constant of integration. The second integral may require further techniques to evaluate.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_integrate_x_secx
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Change_68_percent_to_a_fraction_in_its_simplest_form
- https://math.answers.com/math-and-arithmetic/How_do_you_integrate_x_secx
- https://math.answers.com/math-and-arithmetic/How_many_points_are_in_a_plane
- https://math.answers.com/math-and-arithmetic/How_would_you_write_11.02