math.answers.com/math-and-arithmetic/How_do_you_integrate_x_secx

Preview meta tags from the math.answers.com website.

Linked Hostnames

8

Thumbnail

Search Engine Appearance

Google

https://math.answers.com/math-and-arithmetic/How_do_you_integrate_x_secx

How do you integrate x secx? - Answers

To integrate ( x \sec x ), you can use integration by parts. Let ( u = x ) and ( dv = \sec x , dx ). Then, ( du = dx ) and ( v = \ln |\sec x + \tan x| ). Applying the integration by parts formula, you get: [ \int x \sec x , dx = x \ln |\sec x + \tan x| - \int \ln |\sec x + \tan x| , dx + C ] where ( C ) is the constant of integration. The second integral may require further techniques to evaluate.



Bing

How do you integrate x secx? - Answers

https://math.answers.com/math-and-arithmetic/How_do_you_integrate_x_secx

To integrate ( x \sec x ), you can use integration by parts. Let ( u = x ) and ( dv = \sec x , dx ). Then, ( du = dx ) and ( v = \ln |\sec x + \tan x| ). Applying the integration by parts formula, you get: [ \int x \sec x , dx = x \ln |\sec x + \tan x| - \int \ln |\sec x + \tan x| , dx + C ] where ( C ) is the constant of integration. The second integral may require further techniques to evaluate.



DuckDuckGo

https://math.answers.com/math-and-arithmetic/How_do_you_integrate_x_secx

How do you integrate x secx? - Answers

To integrate ( x \sec x ), you can use integration by parts. Let ( u = x ) and ( dv = \sec x , dx ). Then, ( du = dx ) and ( v = \ln |\sec x + \tan x| ). Applying the integration by parts formula, you get: [ \int x \sec x , dx = x \ln |\sec x + \tan x| - \int \ln |\sec x + \tan x| , dx + C ] where ( C ) is the constant of integration. The second integral may require further techniques to evaluate.

  • General Meta Tags

    22
    • title
      How do you integrate x secx? - Answers
    • charset
      utf-8
    • Content-Type
      text/html; charset=utf-8
    • viewport
      minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
    • X-UA-Compatible
      IE=edge,chrome=1
  • Open Graph Meta Tags

    7
    • og:image
      https://st.answers.com/html_test_assets/Answers_Blue.jpeg
    • og:image:width
      900
    • og:image:height
      900
    • og:site_name
      Answers
    • og:description
      To integrate ( x \sec x ), you can use integration by parts. Let ( u = x ) and ( dv = \sec x , dx ). Then, ( du = dx ) and ( v = \ln |\sec x + \tan x| ). Applying the integration by parts formula, you get: [ \int x \sec x , dx = x \ln |\sec x + \tan x| - \int \ln |\sec x + \tan x| , dx + C ] where ( C ) is the constant of integration. The second integral may require further techniques to evaluate.
  • Twitter Meta Tags

    1
    • twitter:card
      summary_large_image
  • Link Tags

    16
    • alternate
      https://www.answers.com/feed.rss
    • apple-touch-icon
      /icons/180x180.png
    • canonical
      https://math.answers.com/math-and-arithmetic/How_do_you_integrate_x_secx
    • icon
      /favicon.svg
    • icon
      /icons/16x16.png

Links

58