math.answers.com/math-and-arithmetic/How_do_you_multiply_two_bionomials
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 35 links tomath.answers.com
- 17 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you multiply two bionomials? - Answers
ONE WORD...FOIL. The FOIL method is a way to multiply binomials. "FOIL" is an acronym to remember a set of rules to perform this multiplication. To FOIL you multiply together all of the following: * F: Firsts * O: Outers * I: Inners * L: Lasts and then you add each of these products as demonstrated in the examples below. Let's take two arbitrary binomials. (x+a)(x+b) First: x^2 Outers: bx Inners: ax Last: ab So the product of these two binomials is x^2+bx+ax+ab Which we can simplify as x^2+x(a+b)+ab This is NOT the only way, another way is as below: (x+a)(x+b) Start with the x in x+a and multiply it by both terms in x+b so we have x^2+xb Now do the same with the a in x+a and we have ax+ab Add these all together and you have the same result as you did with the foil method. So why not just use foil? Why have two methods when one is plenty? GOOD QUESTION! The second method can be generalized to trinomials or any other types of polynomial multiplication and the FOIL method can't be.
Bing
How do you multiply two bionomials? - Answers
ONE WORD...FOIL. The FOIL method is a way to multiply binomials. "FOIL" is an acronym to remember a set of rules to perform this multiplication. To FOIL you multiply together all of the following: * F: Firsts * O: Outers * I: Inners * L: Lasts and then you add each of these products as demonstrated in the examples below. Let's take two arbitrary binomials. (x+a)(x+b) First: x^2 Outers: bx Inners: ax Last: ab So the product of these two binomials is x^2+bx+ax+ab Which we can simplify as x^2+x(a+b)+ab This is NOT the only way, another way is as below: (x+a)(x+b) Start with the x in x+a and multiply it by both terms in x+b so we have x^2+xb Now do the same with the a in x+a and we have ax+ab Add these all together and you have the same result as you did with the foil method. So why not just use foil? Why have two methods when one is plenty? GOOD QUESTION! The second method can be generalized to trinomials or any other types of polynomial multiplication and the FOIL method can't be.
DuckDuckGo
How do you multiply two bionomials? - Answers
ONE WORD...FOIL. The FOIL method is a way to multiply binomials. "FOIL" is an acronym to remember a set of rules to perform this multiplication. To FOIL you multiply together all of the following: * F: Firsts * O: Outers * I: Inners * L: Lasts and then you add each of these products as demonstrated in the examples below. Let's take two arbitrary binomials. (x+a)(x+b) First: x^2 Outers: bx Inners: ax Last: ab So the product of these two binomials is x^2+bx+ax+ab Which we can simplify as x^2+x(a+b)+ab This is NOT the only way, another way is as below: (x+a)(x+b) Start with the x in x+a and multiply it by both terms in x+b so we have x^2+xb Now do the same with the a in x+a and we have ax+ab Add these all together and you have the same result as you did with the foil method. So why not just use foil? Why have two methods when one is plenty? GOOD QUESTION! The second method can be generalized to trinomials or any other types of polynomial multiplication and the FOIL method can't be.
General Meta Tags
22- titleHow do you multiply two bionomials? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionONE WORD...FOIL. The FOIL method is a way to multiply binomials. "FOIL" is an acronym to remember a set of rules to perform this multiplication. To FOIL you multiply together all of the following: * F: Firsts * O: Outers * I: Inners * L: Lasts and then you add each of these products as demonstrated in the examples below. Let's take two arbitrary binomials. (x+a)(x+b) First: x^2 Outers: bx Inners: ax Last: ab So the product of these two binomials is x^2+bx+ax+ab Which we can simplify as x^2+x(a+b)+ab This is NOT the only way, another way is as below: (x+a)(x+b) Start with the x in x+a and multiply it by both terms in x+b so we have x^2+xb Now do the same with the a in x+a and we have ax+ab Add these all together and you have the same result as you did with the foil method. So why not just use foil? Why have two methods when one is plenty? GOOD QUESTION! The second method can be generalized to trinomials or any other types of polynomial multiplication and the FOIL method can't be.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_multiply_two_bionomials
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/0.2km_equals_how_many_meters
- https://math.answers.com/math-and-arithmetic/How_can_you_make_5K_dollars_in_a_couple_of_days
- https://math.answers.com/math-and-arithmetic/How_do_you_multiply_two_bionomials
- https://math.answers.com/math-and-arithmetic/How_many_days_make_up_690_hours