math.answers.com/math-and-arithmetic/How_do_you_solve_Log3_log2x_-_log(3x_plus_7)
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 34 links tomath.answers.com
- 18 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How do you solve Log3 log2x - log(3x plus 7)? - Answers
To solve the equation ( \log_3(\log_2 x) - \log(3x + 7) = 0 ), first rewrite it as ( \log_3(\log_2 x) = \log(3x + 7) ). This implies ( \log_2 x = 3^{\log(3x + 7)} ). Next, convert ( \log(3x + 7) ) to base 3, and isolate ( x ) by converting back to exponential form. Finally, solve the resulting equation for ( x ).
Bing
How do you solve Log3 log2x - log(3x plus 7)? - Answers
To solve the equation ( \log_3(\log_2 x) - \log(3x + 7) = 0 ), first rewrite it as ( \log_3(\log_2 x) = \log(3x + 7) ). This implies ( \log_2 x = 3^{\log(3x + 7)} ). Next, convert ( \log(3x + 7) ) to base 3, and isolate ( x ) by converting back to exponential form. Finally, solve the resulting equation for ( x ).
DuckDuckGo
How do you solve Log3 log2x - log(3x plus 7)? - Answers
To solve the equation ( \log_3(\log_2 x) - \log(3x + 7) = 0 ), first rewrite it as ( \log_3(\log_2 x) = \log(3x + 7) ). This implies ( \log_2 x = 3^{\log(3x + 7)} ). Next, convert ( \log(3x + 7) ) to base 3, and isolate ( x ) by converting back to exponential form. Finally, solve the resulting equation for ( x ).
General Meta Tags
22- titleHow do you solve Log3 log2x - log(3x plus 7)? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionTo solve the equation ( \log_3(\log_2 x) - \log(3x + 7) = 0 ), first rewrite it as ( \log_3(\log_2 x) = \log(3x + 7) ). This implies ( \log_2 x = 3^{\log(3x + 7)} ). Next, convert ( \log(3x + 7) ) to base 3, and isolate ( x ) by converting back to exponential form. Finally, solve the resulting equation for ( x ).
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_do_you_solve_Log3_log2x_-_log%283x_plus_7%29
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/Could_you_please_help_find_the_coordinates_of_the_x_intercept_2x_y6
- https://math.answers.com/math-and-arithmetic/How_do_you_solve_Log3_log2x_-_log%283x_plus_7%29
- https://math.answers.com/math-and-arithmetic/How_many_grams_or_in_1.4_kg
- https://math.answers.com/math-and-arithmetic/How_many_kilograms_of_CO2_do_5_kilograms_of_dried_tree_correspond