math.answers.com/math-and-arithmetic/How_is_the_sum_of_a_rational_and_irrational_number_irrational
Preview meta tags from the math.answers.com website.
Linked Hostnames
8- 32 links tomath.answers.com
- 20 links towww.answers.com
- 1 link totwitter.com
- 1 link towww.facebook.com
- 1 link towww.instagram.com
- 1 link towww.pinterest.com
- 1 link towww.tiktok.com
- 1 link towww.youtube.com
Thumbnail

Search Engine Appearance
How is the sum of a rational and irrational number irrational? - Answers
This can easily be proved by contradiction. Without loss of generality, I will take specific numbers as an example. The proof can easily be extended to any rational + irrational number. Assumption: 1 plus the square root of 2 is rational. (It is a well-known fact that the square root of 2 is irrational. No need to prove it here; you can use any other irrational number will do.) This rational sum can be written as p / q, where "p" and "q" are whole numbers (this is basically the definition of a "rational number"). Then, the square root of 2, which is equal to the sum minus 1, is: p / q - 1 = p / q - q / q = (p - q) / q Since the difference of two whole numbers is a whole number, this makes the square root of 2 rational, which doesn't make sense.
Bing
How is the sum of a rational and irrational number irrational? - Answers
This can easily be proved by contradiction. Without loss of generality, I will take specific numbers as an example. The proof can easily be extended to any rational + irrational number. Assumption: 1 plus the square root of 2 is rational. (It is a well-known fact that the square root of 2 is irrational. No need to prove it here; you can use any other irrational number will do.) This rational sum can be written as p / q, where "p" and "q" are whole numbers (this is basically the definition of a "rational number"). Then, the square root of 2, which is equal to the sum minus 1, is: p / q - 1 = p / q - q / q = (p - q) / q Since the difference of two whole numbers is a whole number, this makes the square root of 2 rational, which doesn't make sense.
DuckDuckGo
How is the sum of a rational and irrational number irrational? - Answers
This can easily be proved by contradiction. Without loss of generality, I will take specific numbers as an example. The proof can easily be extended to any rational + irrational number. Assumption: 1 plus the square root of 2 is rational. (It is a well-known fact that the square root of 2 is irrational. No need to prove it here; you can use any other irrational number will do.) This rational sum can be written as p / q, where "p" and "q" are whole numbers (this is basically the definition of a "rational number"). Then, the square root of 2, which is equal to the sum minus 1, is: p / q - 1 = p / q - q / q = (p - q) / q Since the difference of two whole numbers is a whole number, this makes the square root of 2 rational, which doesn't make sense.
General Meta Tags
22- titleHow is the sum of a rational and irrational number irrational? - Answers
- charsetutf-8
- Content-Typetext/html; charset=utf-8
- viewportminimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no
- X-UA-CompatibleIE=edge,chrome=1
Open Graph Meta Tags
7- og:imagehttps://st.answers.com/html_test_assets/Answers_Blue.jpeg
- og:image:width900
- og:image:height900
- og:site_nameAnswers
- og:descriptionThis can easily be proved by contradiction. Without loss of generality, I will take specific numbers as an example. The proof can easily be extended to any rational + irrational number. Assumption: 1 plus the square root of 2 is rational. (It is a well-known fact that the square root of 2 is irrational. No need to prove it here; you can use any other irrational number will do.) This rational sum can be written as p / q, where "p" and "q" are whole numbers (this is basically the definition of a "rational number"). Then, the square root of 2, which is equal to the sum minus 1, is: p / q - 1 = p / q - q / q = (p - q) / q Since the difference of two whole numbers is a whole number, this makes the square root of 2 rational, which doesn't make sense.
Twitter Meta Tags
1- twitter:cardsummary_large_image
Link Tags
16- alternatehttps://www.answers.com/feed.rss
- apple-touch-icon/icons/180x180.png
- canonicalhttps://math.answers.com/math-and-arithmetic/How_is_the_sum_of_a_rational_and_irrational_number_irrational
- icon/favicon.svg
- icon/icons/16x16.png
Links
58- https://math.answers.com
- https://math.answers.com/math-and-arithmetic/A_number_greater_than_or_equal_to_1_and_less_than_10
- https://math.answers.com/math-and-arithmetic/How_do_you_right_350205500_in_word_form
- https://math.answers.com/math-and-arithmetic/How_is_the_sum_of_a_rational_and_irrational_number_irrational
- https://math.answers.com/math-and-arithmetic/How_many_micograms_0.000001_are_in_one_milligram_0.001